Synthesis of Mo2C@CeO2@Fe3O4 particles for enhancing three-dimensional heterogeneous electro-Fenton degradation of MIT and HEDP

被引:0
|
作者
Rao, Qian [1 ]
Li, Hui-qiang [1 ]
Yang, Ping [1 ]
Guo, Ziou [1 ]
机构
[1] Sichuan Univ, Coll Architecture & Environm, Chengdu 610065, Peoples R China
关键词
Three-dimensional electro-Fenton; 2-methyl-4-isothiazolin-3-one removal; 1-hydroxy-1,1-diphosphonoethane removal; Mo2C@CeO2@Fe3O4 particles; Experimental parameters; FIELD WASTE-WATER; CATALYTIC DEGRADATION; CARBON; MXENE; EFFICIENCY; OXIDATION; MECHANISM; KINETICS; REMOVAL; PERFORMANCE;
D O I
10.1007/s11814-025-00386-4
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Mo2C@Fe(3)O(4 )and three kinds of MO2-doped Mo2C@Fe3O4 were successfully fabricated as the Mo2C@CeO2@Fe3O4 Mo2C@CeO2@Fe3O4 and Mo2C@CeO2@Fe(3)O(4)particles for the degradation of 2-methyl-4-isothiazolin-3-one and 1-hydroxy-1,1-diphosphonoethane in a three-dimensional electro-Fenton system. The catalyst particles showed an enhancement for the catalytic activity in the system. Furthermore, the Mo2C@CeO2@Fe(3)O(4)particles exhibited superior activity for 2-methyl-4-isothiazolin-3-one and 1-hydroxy-1,1-diphosphonoethane degradation compared to the other two particles. Based on the characterization of the synthesized particles, leaching concentration of Fe2+, generation of H2O2, center dot OH, O-2(center dot-) the reasons for the difference in pollutant degradation performance among the three type particles were comprehensively analyzed. At last, some important experimental parameters, such as particles dosage, current density and aeration intensity, which would obviously affect MIT and HEDP degradation performance were studied. Using the Mo2C@CeO2@Fe3O4 as catalytic particles, optimal 2-methyl-4-isothiazolin-3-one and 1-hydroxy-1,1-diphosphonoethane degradation rates were 97.2% and 73.8% with 0.5 g of particle dosage, 97.22% and 73.75% with 300 mA of current density, and 97.28% and 73.71% with 0.1 L min(-1 )of aeration intensity.
引用
收藏
页码:563 / 576
页数:14
相关论文
共 50 条
  • [21] Introducing MXenes into the Heterogeneous Catalyst: Synthesizing Mo2CTx@Fe3O4 with Excellent Recoverability to Degrade Methylisothiazolinone in the Electro-Fenton System
    Wei, Liping
    Zhou, Kexin
    Rao, Qian
    Li, Hui-qiang
    Yang, Ping
    ENVIRONMENTAL ENGINEERING SCIENCE, 2023, 40 (12) : 657 - 666
  • [22] Degradation of chloramphenicol and metronidazole by electro-Fenton process using graphene oxide-Fe3O4 as heterogeneous catalyst
    Gormez, Fatma
    Gormez, Ozkan
    Gozmen, Belgin
    Kalderis, Dimitrios
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2019, 7 (02):
  • [23] Synthesis of a novel hydrophobic CeO2-BiOCl/CF composite cathode for efficient heterogeneous electro-Fenton degradation of tetracycline
    Lv, Huiqi
    Kuai, Jiangshan
    Wang, Rongshuai
    Mou, Yiwen
    Guo, Weilin
    CATALYSIS SCIENCE & TECHNOLOGY, 2025, 15 (02) : 537 - 546
  • [24] Enhancing the treatment efficiency of three-dimensional electro-Fenton system for organic wastewater: An analysis from the comprehensive perspective of H 2 O 2 generation
    Tang, Jiping
    Hou, Baolin
    Liu, Jinyue
    Deng, Renjian
    Wang, Chuang
    Li, Zhi
    Jiao, Yong
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (03):
  • [25] Establishment of a reagent-free three-dimensional electro-Fenton system for high H2O2 production and efficient degradation of Roxarsone
    Peng, Mengling
    He, Jiahong
    An, Jibin
    Xie, Taiping
    Zhao, Tiantao
    Li, Guoqiang
    CHEMICAL ENGINEERING JOURNAL, 2023, 477
  • [26] Degradation of Dimethyl Phthalate by Heterogeneous Electro-Fenton Process Using Fe3O4-Doped Biomass Porous Carbon
    Hongdi Mou
    Qi Yang
    Shenbao Qu
    Xia Hu
    Ziying Li
    Yiu Fai Tsang
    Water, Air, & Soil Pollution, 2024, 235
  • [27] Degradation of Dimethyl Phthalate by Heterogeneous Electro-Fenton Process Using Fe3O4-Doped Biomass Porous Carbon
    Mou, Hongdi
    Yang, Qi
    Qu, Shenbao
    Hu, Xia
    Li, Ziying
    Tsang, Yiu Fai
    WATER AIR AND SOIL POLLUTION, 2024, 235 (01):
  • [28] Degradation of phenols by heterogeneous electro-Fenton with a Fe3O4-chitosan composite and a boron-doped diamond anode
    Pujol, Alberto A.
    Leon, Itzel
    Cardenas, Jesus
    Sepulveda-Guzman, Selene
    Manriquez, Juan
    Sires, Ignasi
    Bustos, Erika
    ELECTROCHIMICA ACTA, 2020, 337
  • [29] Effective degradation of ciprofloxacin from aqueous solutions using heterogeneous electro-Fenton coupled with Fe@Fe2O3 core-shell nanoparticle
    Zare, Mohammad Reza
    Gomnam, Fatemeh
    Darvishmotevalli, Mohammad
    Mengelizadeh, Nezamaddin
    Rahimi, Somaye
    Moradalizadeh, Saeideh
    Rahmani, Abdolrasoul
    DESALINATION AND WATER TREATMENT, 2024, 320
  • [30] Enhanced degradation of old landfill leachate in heterogeneous electro-Fenton catalyzed using Fe3O4 nano-particles encapsulated by metal organic frameworks
    He, Zhengguang
    Liu, Yaqi
    Wang, Jinlin
    Lv, Yujing
    Xu, Yun
    Jia, Shengyong
    JOURNAL OF CLEANER PRODUCTION, 2021, 321