Characterization of Anti-derivations on Generalized Matrix Algebras

被引:0
作者
Liu, Lei [1 ]
Hou, Suqian [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710126, Peoples R China
基金
中国国家自然科学基金;
关键词
Derivation; Anti-derivation; Generalized matrix algebra; ADDITIVE MAPS;
D O I
10.1007/s40840-024-01814-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}$$\end{document} be a generalized matrix algebra. A linear map phi:G -> G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi : \mathcal {G} \rightarrow \mathcal {G}$$\end{document} is said to be an anti-derivation at zero if T phi(S)+phi(T)S=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T\varphi (S)+\varphi (T)S=0$$\end{document} for every S,T is an element of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S, T \in \mathcal {G}$$\end{document} with ST=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ST=0$$\end{document}. In this paper, we describe the general form of phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} and consider the question of when phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} equals to zero. The results are then applied to full matrix algebras and some operator algebras.
引用
收藏
页数:19
相关论文
共 20 条
[1]   Linear Maps Which are Anti-derivable at Zero [J].
Abulhamil, Doha Adel ;
Jamjoom, Fatmah B. ;
Peralta, Antonio M. .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (06) :4315-4334
[2]   Characterizations of derivations on triangular rings: Additive maps derivable at idempotents [J].
An, Runling ;
Hou, Jinchuan .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (5-7) :1070-1080
[3]   Jordan derivations and antiderivations on triangular matrices [J].
Benkovic, D .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 397 :235-244
[4]   Maps characterized by action on zero products [J].
Chebotar, MA ;
Ke, WF ;
Lee, PH .
PACIFIC JOURNAL OF MATHEMATICS, 2004, 216 (02) :217-228
[5]   Commuting maps of triangular algebras [J].
Cheung, WS .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2001, 63 :117-127
[6]   DERIVATIONS OF NEST ALGEBRAS [J].
CHRISTENSEN, E .
MATHEMATISCHE ANNALEN, 1977, 229 (02) :155-161
[7]   Lie centralizers at the zero products on generalized matrix algebras [J].
Fadaee, B. ;
Ghahramani, H. .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2022, 21 (08)
[8]  
Fadaee B, 2020, B MALAYS MATH SCI SO, V43, P2851, DOI 10.1007/s40840-019-00841-6
[9]   ANTI-DERIVABLE LINEAR MAPS AT ZERO ON STANDARD OPERATOR ALGEBRAS [J].
Fallahi, K. ;
Ghahramani, H. .
ACTA MATHEMATICA HUNGARICA, 2022, 167 (01) :287-294
[10]  
Ghahramani H., 2023, Khayyam J. Math, V9, P30