A Monotone Second-Order Numerical Method for Fredholm Integro-Differential Equation

被引:0
|
作者
Amirali, Ilhame [1 ]
Durmaz, Muhammet Enes [2 ]
Amiraliyev, Gabil M. [3 ]
机构
[1] Duzce Univ, Fac Arts & Sci, Dept Math, TR-81620 Duzce, Turkiye
[2] Kirklareli Univ, Dept Informat Technol, TR-39100 Kirklareli, Turkiye
[3] Millet St 8-9, TR-34377 Istanbul, Turkiye
关键词
Fredholm integro-differential equation; finite difference method; error estimate; uniform convergence;
D O I
10.1007/s00009-024-02746-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this study is to present a monotone type numerical method for solving Fredholm integro-differential equations. To solve this problem numerically, we have established a finite difference scheme on a uniform mesh using the composite trapezoidal formula. Furthermore, it has been proven that this presented method is second-order convergent in the discrete maximum norm. To support the theoretical basis of this proposed approach, numerical results are presented.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Fitted second order numerical method for a singularly perturbed Fredholm integro-differential equation
    Amiraliyev, Gabil M.
    Durmaz, Muhammet Enes
    Kudu, Mustafa
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2020, 27 (01) : 71 - 88
  • [2] A NUMERICAL METHOD FOR A SECOND ORDER SINGULARLY PERTURBED FREDHOLM INTEGRO-DIFFERENTIAL EQUATION
    Amiraliyev, Gabil M.
    Durmaz, Muhammet Enes
    Kudu, Mustafa
    MISKOLC MATHEMATICAL NOTES, 2021, 22 (01) : 37 - 48
  • [3] A second-order numerical approximation of a singularly perturbed nonlinear Fredholm integro-differential equation
    Durmaz, Muhammet Enes
    Amirali, Ilhame
    Mohapatra, Jugal
    Amiraliyev, Gabil M.
    APPLIED NUMERICAL MATHEMATICS, 2023, 191 : 17 - 28
  • [4] Second-order numerical method for a neutral Volterra integro-differential equation
    Amirali, Ilhame
    Fedakar, Burcu
    Amiraliyev, Gabil M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 453
  • [5] A multiscale Galerkin method for second-order boundary value problems of Fredholm integro-differential equation
    Chen, Jian
    Huang, Yong
    Rong, Haiwu
    Wu, Tingting
    Zeng, Taishan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 290 : 633 - 640
  • [6] A Robust Numerical Method for a Singularly Perturbed Fredholm Integro-Differential Equation
    Muhammet Enes Durmaz
    Gabil M. Amiraliyev
    Mediterranean Journal of Mathematics, 2021, 18
  • [7] A Robust Numerical Method for a Singularly Perturbed Fredholm Integro-Differential Equation
    Durmaz, Muhammet Enes
    Amiraliyev, Gabil M.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (01)
  • [8] NUMERICAL STUDY FOR A SECOND ORDER FREDHOLM INTEGRO-DIFFERENTIAL EQUATION BY APPLYING GALERKIN-CHEBYSHEV-WAVELETS METHOD
    Henka, Youcef
    Lemita, Samir
    Aissaoui, Mohamed Zine
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTATIONAL MECHANICS, 2022, 21 (04) : 28 - 39
  • [9] A performance assessment of an HDG method for second-order Fredholm integro-differential equation: existence-uniqueness and approximation
    Karaaslan, Mehmet Fatih
    TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (05) : 2269 - 2281
  • [10] A computational approach to solving a second-order singularly perturbed Fredholm integro-differential equation with discontinuous source term
    Manebo, Wubeshet Seyoum
    Woldaregay, Mesfin Mekuria
    Dinka, Tekle Gemechu
    Duressa, Gemechis File
    NUMERICAL ALGORITHMS, 2024, 97 (03) : 1415 - 1430