Development of hybrid robust model based on computational modeling and machine learning for analysis of drug sorption onto porous adsorbents

被引:0
作者
Tasqeeruddin, S. [1 ]
Sultana, Shaheen [2 ]
Alsayari, Abdulrhman [3 ]
机构
[1] King Khalid Univ, Coll Pharm, Dept Pharmaceut Chem, Abha 62529, Saudi Arabia
[2] Anwarul Uloom Coll Pharm, Dept Pharmacol, Hyderabad 500001, India
[3] King Khalid Univ, Coll Pharm, Dept Pharmacognosy, Abha 62529, Saudi Arabia
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Drug separation; Mass transfer; Modeling; Separation; Machine learning; SEPARATION; ADSORPTION;
D O I
10.1038/s41598-025-93596-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study investigates the utilization of three regression models, i.e., Kernel Ridge Regression (KRR), nu-Support Vector Regression (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\:{\upnu\:}$$\end{document}-SVR), and Polynomial Regression (PR) for the purpose of forecasting the concentration (C) of a drug within a specified environment, relying on the coordinates (x and y). The analyses were carried out for separation of drug from a solution by adsorption process where the concentration of drug was obtained in the solution and the adsorbent via computational fluid dynamics (CFD), and the results of concentration distribution were used or machine learning modeling. The model considered mass transfer and fluid flow equations to determine concentration distribution of solute in the system. The hyperparameter optimization was carried out using the Fruit-Fly Optimization Algorithm (FFOA), a nature-inspired optimization technique. Our results demonstrate the performance of each model in terms of key regression metrics. KRR achieved an R2 score of 0.84851, with a Root Mean Square Error (RMSE) of 1.0384E-01 and a Mean Absolute Error (MAE) of 7.27762E-02. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\:\nu\:$$\end{document}-SVR exhibited exceptional accuracy with an R2 of 0.98593, accompanied by an RMSE of 3.5616E-02 and an MAE of 1.36749E-02. PR, a traditional regression method, attained an R2 score of 0.94077, an RMSE of 7.2042E-02, and an MAE of 4.81533E-02.
引用
收藏
页数:10
相关论文
共 23 条
  • [1] Efficiency development of surface tension for different ionic liquids through novel model of Machine learning Technique: Application of in-thermal engineering
    Abourehab, Mohammed A. S.
    Shawky, Ahmed M.
    Venkatesan, Kumar
    Yasmin, Sabina
    Alsubaiyel, Amal M.
    AboRas, Kareem M.
    [J]. JOURNAL OF MOLECULAR LIQUIDS, 2022, 367
  • [2] As(III) removal from drinking water using FMCTO@Fe3O4 in the adsorption-magnetic separation-sand filtration equipment: Trade-off between As removal efficiency and adsorbent utilization rate
    Bai, Xue
    Xiao, Yuyang
    Wu, Kun
    Liu, Ting
    Li, Zhihua
    [J]. WATER RESEARCH, 2025, 277
  • [3] [毕方明 Bi Fangming], 2012, [南京大学学报. 自然科学版, Journal of Nanjing University], V48, P491
  • [4] Bishop C. M., 2006, Pattern Recognition and Machine Learning, V4
  • [5] Boswell D., 2002, Introduction to support vector machines, P11
  • [6] Botchkarev A, 2018, Arxiv, DOI [arXiv:1809.03006, DOI 10.28945/4184, DOI 10.48550/ARXIV.1809.03006]
  • [7] Cristianini N., 2000, INTRO SUPPORT VECTOR, DOI [10.1017/CBO9780511801389, DOI 10.1017/CBO9780511801389]
  • [8] Preparation of ZIF-8 modified PAN/PU superhydrophobic-superoleophilic composite nanofiber membranes for oil/water separation and dye adsorption
    Fang, Shaokang
    Li, Yanan
    Yu, Huizi
    Li, Huirong
    Feng, Shida
    Wang, Shuai
    Chen, Xiaoyu
    Li, Jintong
    Yuan, Yushan
    Wang, Xue
    Yu, Yue
    Zhang, Hong
    [J]. REACTIVE & FUNCTIONAL POLYMERS, 2025, 209
  • [9] A novel F-SVM based on FOA for improving SVM performance
    Gu, Qinghua
    Chang, Yinxin
    Li, Xinhong
    Chang, Zhaozhao
    Feng, Zhidong
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2021, 165
  • [10] Hu Z., 2025, Smart Agricultural Technol.