A comprehensive human embryo reference tool using single-cell RNA-sequencing data

被引:10
|
作者
Zhao, Cheng [1 ,2 ]
Reyes, Alvaro Plaza [1 ,2 ,3 ]
Schell, John Paul [1 ,2 ]
Weltner, Jere [1 ,2 ,4 ,5 ]
Ortega, Nicolas M. [1 ,2 ]
Zheng, Yi [6 ,7 ]
Bjorklund, Asa K. [8 ]
Baque-vidal, Laura [1 ,2 ]
Sokka, Joonas [4 ]
Torokovic, Ras [4 ]
Cox, Brian [9 ]
Rossant, Janet [10 ]
Fu, Jianping [6 ,11 ]
Petropoulos, Sophie [1 ,2 ,12 ,13 ]
Lanner, Fredrik [1 ,2 ,14 ]
机构
[1] Karolinska Inst, Dept Clin Sci Intervent & Technol CLINTEC, Div Obstet & Gynecol, Stockholm, Sweden
[2] Karolinska Univ sjukhuset, Div Obstet & Gynecol, Stockholm, Sweden
[3] Andalusian Mol Biol & Regenerat Med Ctr CABIMER, Dept Regenerat & Cell Therapy, Seville, Spain
[4] Univ Helsinki, Stem Cells & Metab Res Program, Helsinki, Finland
[5] Folkhalsan Res Ctr, Helsinki, Finland
[6] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48104 USA
[7] Syracuse Univ, Dept Biomed & Chem Engn, Syracuse, NY USA
[8] Uppsala Univ, Dept Cell & Mol Biol, Sci Life Lab, Natl Bioinformat Infrastruct Sweden, Uppsala, Sweden
[9] Univ Toronto, Fac Med, Dept Physiol, Toronto, ON, Canada
[10] Hosp Sick Children, Program Dev & Stem Cell Biol, Toronto, ON, Canada
[11] Univ Michigan, Dept Cell & Dev Biol, Med Sch, Ann Arbor, MI USA
[12] Univ Montreal, Dept Med, Montreal, PQ, Canada
[13] Ctr Rech Ctr Hosp Univ Montreal, Axe Immunopathol, Montreal, PQ, Canada
[14] Karolinska Inst, Ming Wai Lau Ctr Reparat Med, Stockholm Node, Stockholm, Sweden
基金
瑞典研究理事会; 加拿大健康研究院; 加拿大自然科学与工程研究理事会;
关键词
PLURIPOTENT STEM-CELLS; TROPHOBLAST; PREIMPLANTATION; DIFFERENTIATION; BLASTOCYST; REVEALS; RECONSTRUCTION; EXPRESSION; SIGNATURES; MODELS;
D O I
10.1038/s41592-024-02493-2
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Stem cell-based embryo models offer unprecedented experimental tools for studying early human development. The usefulness of embryo models hinges on their molecular, cellular and structural fidelities to their in vivo counterparts. To authenticate human embryo models, single-cell RNA sequencing has been utilized for unbiased transcriptional profiling. However, an organized and integrated human single-cell RNA-sequencing dataset, serving as a universal reference for benchmarking human embryo models, remains unavailable. Here we developed such a reference through the integration of six published human datasets covering development from the zygote to the gastrula. Lineage annotations are contrasted and validated with available human and nonhuman primate datasets. Using stabilized Uniform Manifold Approximation and Projection, we constructed an early embryogenesis prediction tool, where query datasets can be projected on the reference and annotated with predicted cell identities. Using this reference tool, we examined published human embryo models, highlighting the risk of misannotation when relevant references are not utilized for benchmarking and authentication. This resource integrates different human embryo datasets to create a transcriptional reference map of human embryonic development from zygote to gastrula.
引用
收藏
页码:193 / 206
页数:35
相关论文
共 50 条
  • [1] An Introduction to the Analysis of Single-Cell RNA-Sequencing Data
    AlJanahi, Aisha A.
    Danielsen, Mark
    Dunbar, Cynthia E.
    MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT, 2018, 10 : 189 - 196
  • [2] Single-Cell RNA-Sequencing in Glioma
    Johnson, Eli
    Dickerson, Katherine L.
    Connolly, Ian D.
    Gephart, Melanie Hayden
    CURRENT ONCOLOGY REPORTS, 2018, 20 (05)
  • [3] Power analysis of single-cell RNA-sequencing experiments
    Svensson, Valentine
    Natarajan, Kedar Nath
    Ly, Lam-Ha
    Miragaia, Ricardo J.
    Labalette, Charlotte
    Macaulay, Iain C.
    Cvejic, Ana
    Teichmann, Sarah A.
    NATURE METHODS, 2017, 14 (04) : 381 - +
  • [4] Tracing the first hematopoietic stem cell generation in human embryo by single-cell RNA sequencing
    Zeng, Yang
    He, Jian
    Bai, Zhijie
    Li, Zongcheng
    Gong, Yandong
    Liu, Chen
    Ni, Yanli
    Du, Junjie
    Ma, Chunyu
    Bian, Lihong
    Lan, Yu
    Liu, Bing
    CELL RESEARCH, 2019, 29 (11) : 881 - 894
  • [5] Single-cell RNA-sequencing in asthma research
    Tang, Weifeng
    Li, Mihui
    Teng, Fangzhou
    Cui, Jie
    Dong, Jingcheng
    Wang, Wenqian
    FRONTIERS IN IMMUNOLOGY, 2022, 13
  • [6] Single-Cell RNA-Sequencing Reveals the Breadth of Osteoblast Heterogeneity
    Yoshioka, Hirotaka
    Okita, Saki
    Nakano, Masashi
    Minamizaki, Tomoko
    Nubukiyo, Asako
    Sotomaru, Yusuke
    Bonnelye, Edith
    Kozai, Katsuyuki
    Tanimoto, Kotaro
    Aubin, Jane E.
    Yoshiko, Yuji
    JBMR PLUS, 2021, 5 (06)
  • [7] Comparison of Computational Methods for Imputing Single-Cell RNA-Sequencing Data
    Zhang, Lihua
    Zhang, Shihua
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2020, 17 (02) : 376 - 389
  • [8] Single-cell RNA-sequencing of human eosinophils in allergic inflammation in the esophagus
    Morgenstern, Netali Ben-Baruch
    Rochman, Mark
    Kotliar, Michael
    Dunn, Julia L. M.
    Mack, Lydia
    Besse, John
    Natale, Mia A.
    Klingler, Andrea M.
    Felton, Jennifer M.
    Caldwell, Julie M.
    Barski, Artem
    Rothenberg, Marc E.
    JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2024, 154 (04) : 974 - 987
  • [9] Accounting for technical noise in Bayesian graphical models of single-cell RNA-sequencing data
    Oh, Jihwan
    Chang, Changgee
    Long, Qi
    BIOSTATISTICS, 2022, 24 (01) : 161 - 176
  • [10] Comprehensive transcriptional atlas of human adenomyosis deciphered by the integration of single-cell RNA-sequencing and spatial transcriptomics
    Chen, Tao
    Xu, Yiliang
    Xu, Xiaocui
    Wang, Jianzhang
    Qiu, Zhiruo
    Yu, Yayuan
    Jiang, Xiaohong
    Shao, Wanqi
    Bai, Dandan
    Wang, Mingzhu
    Mei, Shuyan
    Cheng, Tao
    Wu, Li
    Gao, Shaorong
    Che, Xuan
    PROTEIN & CELL, 2024, 15 (07) : 530 - 546