Efficient and accurate determination of the degree of substitution of cellulose acetate using ATR-FTIR spectroscopy and machine learning

被引:0
作者
Rhein, Frank [1 ]
Sehn, Timo [2 ]
Meier, Michael A. R. [2 ,3 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Mech Proc Engn & Mech MVM, D-76131 Karlsruhe, Germany
[2] Karlsruhe Inst Technol KIT, Inst Biol & Chem Syst Funct Mol Syst IBCS FMS, D-76344 Karlsruhe, Germany
[3] Karlsruhe Inst Technol KIT, Inst Organ Chem IOC, D-76131 Karlsruhe, Germany
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Machine learning; Degree of substitution; Infrared spectroscopy; Cellulose ester; Cellulose acetate; SWITCHABLE SOLVENT; ESTERS;
D O I
10.1038/s41598-025-86378-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Multiple linear regression models were trained to predict the degree of substitution (DS) of cellulose acetate based on raw infrared (IR) spectroscopic data. A repeated k-fold cross validation ensured unbiased assessment of model accuracy. Using the DS obtained from 1H NMR data as reference, the machine learning model achieved a mean absolute error (MAE) of 0.069 in DS on test data, demonstrating higher accuracy compared to the manual evaluation based on peak integration. Limiting the model to physically relevant areas unexpectedly showed the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {C}{-}\hbox {H}}$$\end{document} peak to be the strongest predictor of DS. By applying a n-best feature selection algorithm based on the F-statistic of the Pearson correlation coefficient, several relevant areas were identified and the optimized model achieved an improved MAE of 0.052. Predicting the DS of other cellulose acetate data sets yielded similar accuracy, demonstrating that the developed models are robust and suitable for efficient and accurate routine evaluations. The model solely trained on cellulose acetate was further able to predict the DS of other cellulose esters with an accuracy of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\approx 0.1-0.2$$\end{document} in DS and model architectures for a more general analysis of cellulose esters were proposed.
引用
收藏
页数:11
相关论文
共 49 条
[1]  
[Anonymous], 1852, Ann. Phys, V162, P78, DOI [DOI 10.1002/ANDP.18521620505, 10.1002/andp.18521620505]
[2]   Determination of the degree of methylesterification of pectic polysaccharides by FT-IR using an outer product PLS1 regression [J].
Barros, AS ;
Mafra, I ;
Ferreira, D ;
Cardoso, S ;
Reis, A ;
da Silva, JAL ;
Delgadillo, I ;
Rutledge, DN ;
Coimbra, MA .
CARBOHYDRATE POLYMERS, 2002, 50 (01) :85-94
[3]   Expedient, accurate methods for the determination of the degree of substitution of cellulose carboxylic esters: Application of UV-vis spectroscopy (dye solvatochromism) and FTIR [J].
Casarano, Romeu ;
Fidale, Ludmila C. ;
Lucheti, Camila M. ;
Heinze, Thomas ;
El Seoud, Omar A. .
CARBOHYDRATE POLYMERS, 2011, 83 (03) :1285-1292
[4]   Novel Thermoplastic Cellulose Esters Containing Bulky Moieties and Soft Segments [J].
Chen, Zhangyan ;
Zhang, Jinming ;
Xiao, Peng ;
Tian, Weiguo ;
Zhang, Jun .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (04) :4931-4939
[5]   NMR signal processing, prediction, and structure verification with machine learning techniques [J].
Cobas, Carlos .
MAGNETIC RESONANCE IN CHEMISTRY, 2020, 58 (06) :512-519
[6]   Artificial neural network and partial least square regressions for rapid estimation of cellulose pulp dryness based on near infrared spectroscopic data [J].
Costa, Livia Ribeiro ;
Denzin Tonoli, Gustavo Henrique ;
Milagres, Flaviana Reis ;
Gherardi Hein, Paulo Ricardo .
CARBOHYDRATE POLYMERS, 2019, 224
[7]   Substitution degree and fatty chain length influence on structure and properties of fatty acid cellulose esters [J].
Duchatel-Crepy, Lucie ;
Joly, Nicolas ;
Martin, Patrick ;
Marin, Adeline ;
Tahon, Jean-Francois ;
Lefebvre, Jean-Marc ;
Gaucher, Valerie .
CARBOHYDRATE POLYMERS, 2020, 234
[8]   Degradation of Cellulose Derivatives in Laboratory, Man-Made, and Natural Environments [J].
Erdal, Nejla B. ;
Hakkarainen, Minna .
BIOMACROMOLECULES, 2022, 23 (07) :2713-2729
[9]   Sustainable Fatty Acid Modification of Cellulose in a CO2-Based Switchable Solvent and Subsequent Thiol-Ene Modification [J].
Esen, Eren ;
Haedinger, Pauline ;
Meier, Michael A. R. .
BIOMACROMOLECULES, 2021, 22 (02) :586-593
[10]   Properties and applications of cellulose acetate [J].
Fischer, Steffen ;
Thuemmler, Katrin ;
Volkert, Bert ;
Hettrich, Kay ;
Schmidt, Ingeborg ;
Fischer, Klaus .
MACROMOLECULAR SYMPOSIA, 2008, 262 :89-96