In situ surface-enhanced Raman spectroscopy study of interfacial catalytic reaction of bifunctional metal nanoparticles

被引:0
作者
Chong, Ju [1 ,2 ]
Cao, Jianrui [1 ]
Wang, Sulian [1 ]
Huang, Mingju [1 ]
机构
[1] Henan Univ, Sch Phys & Elect, Key Lab Informat Optoelect Mat & Apparat, Kaifeng 475004, Peoples R China
[2] Zhengzhou Railway Vocat & Tech Coll, Zhengzhou 451460, Peoples R China
基金
中国国家自然科学基金;
关键词
surface-enhanced Raman spectroscopy (SERS); photocatalysis; nanomaterials; plasmon resonance (SPR); 4-nitrothiophenol; HOT; GOLD; SERS; AU; AG; ELECTRONS;
D O I
10.1007/s11172-024-4374-8
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Metal-semiconductor bifunctional core-shell nanomaterials were studied using catalytic system Au@CdS as example that displayed surface plasmon resonance (SPR) effects and photocatalytic activity. Some mechanisms of photocatalytic activity of the studied nanomaterials were discussed. Surface-enhanced Raman spectroscopy (SERS) was used to monitor in situ the SPR-driven photocatalytic dimerization of 4-nitrothiophenol (pNTP) to 4,4 '-dimercaptoazobenzene (DMAB). The transfer path of "hot" electrons in Au@CdS was tracked by monitoring Raman spectral changes of the probe molecule. Nanomaterials Au@CdS showed high catalytic activity in photocatalytic degradation of rhodamine 6G. The SPR-displaying metal-semiconductor nanocomposite was indicated to be an extremely promising photocatalytic and in-situ SERS probe.
引用
收藏
页码:2632 / 2639
页数:8
相关论文
共 34 条
[1]   Probing Long-Lived Plasmonic-Generated Charges in TiO2/Au by High-Resolution X-ray Absorption Spectroscopy [J].
Amidani, Lucia ;
Naldoni, Alberto ;
Malvestuto, Marco ;
Marelli, Marcello ;
Glatzel, Pieter ;
Dal Santo, Vladimir ;
Boscherini, Federico .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (18) :5413-5416
[2]   Bifunctional Au@Pt core-shell nanostructures for in situ monitoring of catalytic reactions by surface-enhanced Raman scattering spectroscopy [J].
Bao, Zhi Yong ;
Lei, Dang Yuan ;
Jiang, Ruibin ;
Liu, Xin ;
Dai, Jiyan ;
Wang, Jianfang ;
Chan, Helen L. W. ;
Tsang, Yuen Hong .
NANOSCALE, 2014, 6 (15) :9063-9070
[3]  
Brongersma ML, 2015, NAT NANOTECHNOL, V10, P25, DOI [10.1038/nnano.2014.311, 10.1038/NNANO.2014.311]
[4]   Plasmonic hot electron transport drives nano-localized chemistry [J].
Cortes, Emiliano ;
Xie, Wei ;
Cambiasso, Javier ;
Jermyn, Adam S. ;
Sundararaman, Ravishankar ;
Narang, Prineha ;
Schlueker, Sebastian ;
Maier, Stefan A. .
NATURE COMMUNICATIONS, 2017, 8
[5]   Electromagnetic theories of surface-enhanced Raman spectroscopy [J].
Ding, Song-Yuan ;
You, En-Ming ;
Tian, Zhong-Qun ;
Moskovits, Martin .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (13) :4042-4076
[6]   Substrate-, Wavelength-, and Time-Dependent Plasmon-Assisted Surface Catalysis Reaction of 4-Nitrobenzenethiol Dimerizing to p,p′-Dimercaptoazobenzene on Au, Ag, and Cu Films [J].
Dong, Bin ;
Fang, Yurui ;
Chen, Xiaowei ;
Xu, Hongxing ;
Sun, Mengtao .
LANGMUIR, 2011, 27 (17) :10677-10682
[7]   Prolonged Hot Electron Dynamics in Plasmonic-Metal/Semiconductor Heterostructures with Implications for Solar Photocatalysis [J].
DuChene, Joseph S. ;
Sweeny, Brendan C. ;
Johnston-Peck, Aaron C. ;
Su, Dong ;
Stach, Eric A. ;
Wei, Wei David .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (30) :7887-7891
[8]   CONTROLLED NUCLEATION FOR REGULATION OF PARTICLE-SIZE IN MONODISPERSE GOLD SUSPENSIONS [J].
FRENS, G .
NATURE-PHYSICAL SCIENCE, 1973, 241 (105) :20-22
[9]   Applications of Plasmon-Enhanced Nanocatalysis to Organic Transformations [J].
Gelle, Alexandra ;
Jin, Tony ;
de la Garza, Luis ;
Price, Gareth D. ;
Besteiro, Lucas V. ;
Moores, Audrey .
CHEMICAL REVIEWS, 2020, 120 (02) :986-1041
[10]   An in situ SERS study of plasmonic nanochemistry based on bifunctional "hedgehog-like" arrays [J].
Guan, Yuduo ;
Wang, Zengyao ;
Gu, Panpan ;
Wang, Yu ;
Zhang, Wei ;
Zhang, Gang .
NANOSCALE, 2019, 11 (19) :9422-9428