Bppfl: a blockchain-based framework for privacy-preserving federated learning

被引:0
|
作者
Asad, Muhammad [1 ]
Otoum, Safa [1 ]
机构
[1] Zayed Univ, Dept Technol Innovat, Abu Dhabi 144534, U Arab Emirates
来源
CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS | 2025年 / 28卷 / 02期
关键词
Federated learning; Blockchain; Privacy-preserving; Pallier encryption;
D O I
10.1007/s10586-024-04834-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated Learning (FL) offers a collaborative approach to training machine learning models while preserving data privacy. However, FL faces significant privacy and security challenges, such as identity disclosure and model inference attacks. To this end, we propose a novel Blockchain-Based Framework for Privacy-Preserving Federated Learning (BPPFL), which integrates threshold signature authentication and threshold Paillier encryption with blockchain technology. The BPPFL framework secures participant authentication and protects against internal and external threats, while the blockchain provides an immutable ledger for recording transactions and model updates, ensuring transparency and security. Experimental results show that our framework significantly reduces computation and communication overhead compared to existing methods while maintaining high model accuracy and robust privacy guarantees. Our framework enhances the security and trustworthiness of FL applications, making it suitable for domains like healthcare, finance, and the IoT.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Achieving Blockchain-based Privacy-Preserving Location Proofs under Federated Learning
    Kong, Qinglei
    Yin, Feng
    Xiao, Yue
    Li, Beibei
    Yang, Xuejia
    Cui, Shuguang
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2021), 2021,
  • [22] The blockchain-based privacy-preserving searchable attribute-based encryption scheme for federated learning model in IoMT
    Zhou, Ziyu
    Wang, Na
    Liu, Jianwei
    Fu, Junsong
    Deng, Lunzhi
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2024, 36 (24)
  • [23] BPFL: A Blockchain Based Privacy-Preserving Federated Learning Scheme
    Wang, Naiyu
    Yang, Wenti
    Guan, Zhitao
    Du, Xiaojiang
    Guizani, Mohsen
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [24] A privacy-preserving and verifiable federated learning method based on blockchain
    Fang, Chen
    Guo, Yuanbo
    Ma, Jiali
    Xie, Haodong
    Wang, Yifeng
    COMPUTER COMMUNICATIONS, 2022, 186 : 1 - 11
  • [25] Poster: A Reliable and Accountable Privacy-Preserving Federated Learning Framework using the Blockchain
    Awan, Sana
    Li, Fengjun
    Luo, Bo
    Liu, Mei
    PROCEEDINGS OF THE 2019 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY (CCS'19), 2019, : 2561 - 2563
  • [26] Asynchronous Blockchain-based Privacy-preserving Training Framework for Disease Diagnosis
    Chen, Xuhui
    Wang, Xufei
    Yang, Kun
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 5469 - 5473
  • [27] A blockchain based privacy-preserving federated learning scheme for Internet of Vehicles
    Wang, Naiyu
    Yang, Wenti
    Wang, Xiaodong
    Wu, Longfei
    Guan, Zhitao
    Du, Xiaojiang
    Guizani, Mohsen
    DIGITAL COMMUNICATIONS AND NETWORKS, 2024, 10 (01) : 126 - 134
  • [28] A Survey on Blockchain-Based Federated Learning and Data Privacy
    Chhetri, Bipin
    Gopali, Saroj
    Olapojoye, Rukayat
    Dehbashi, Samin
    Namin, Akhar Siami
    2023 IEEE 47TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE, COMPSAC, 2023, : 1311 - 1318
  • [29] Privacy-Preserving Framework for Blockchain-Based Stock Exchange Platform
    Al-Shaibani, Hamed
    Lasla, Noureddine
    Abdallah, Mohamed
    Bakiras, Spiridon
    IEEE ACCESS, 2022, 10 : 1202 - 1215
  • [30] A blockchain-based location privacy-preserving crowdsensing system
    Yang, Mengmeng
    Zhu, Tianqing
    Liang, Kaitai
    Zhou, Wanlei
    Deng, Robert H.
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2019, 94 : 408 - 418