A systematic construction approach for all 4×4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4\times 4$$\end{document} involutory MDS matrices

被引:0
作者
Yogesh Kumar [1 ]
P. R. Mishra [1 ]
Susanta Samanta [2 ]
Atul Gaur [3 ]
机构
[1] Scientific Analysis Group,R. C. Bose Centre for Cryptology and Security
[2] DRDO,Department of Mathematics
[3] Indian Statistical Institute,undefined
[4] University of Delhi,undefined
关键词
Diffusion layer; MDS matrix; Involutory matrix; Finite field;
D O I
10.1007/s12190-024-02142-z
中图分类号
学科分类号
摘要
Maximum distance separable (MDS) matrices play a crucial role not only in coding theory but also in the design of block ciphers and hash functions. Of particular interest are involutory MDS matrices, which facilitate the use of a single circuit for both encryption and decryption in hardware implementations. In this article, we present several characterizations of involutory MDS matrices of even order. Additionally, we introduce a new matrix form for obtaining all involutory MDS matrices of even order and compare it with other matrix forms available in the literature. We then propose a technique to systematically construct all 4×4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4 \times 4$$\end{document} involutory MDS matrices over a finite field F2m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{2^m}$$\end{document}. This method significantly reduces the search space by focusing on involutory MDS class representative matrices, leading to the generation of all such matrices within a substantially smaller set compared to considering all 4×4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4 \times 4$$\end{document} involutory matrices. Specifically, our approach involves searching for these representative matrices within a set of cardinality (2m-1)5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2^m-1)^5$$\end{document}. Through this method, we provide an explicit enumeration of the total number of 4×4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4 \times 4$$\end{document} involutory MDS matrices over F2m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{2^m}$$\end{document} for m=3,4,…,8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=3,4,\ldots ,8$$\end{document}.
引用
收藏
页码:4677 / 4697
页数:20
相关论文
共 21 条
[1]  
Güzel GG(2019)A new matrix form to generate all Inf. Process. Lett. 147 61-6
[2]  
Sakalli MT(1989) involutory MDS matrices over IEEE Trans. Inf. Theory 35 1314-1319
[3]  
Akleylek S(2012)On MDS codes via Cauchy matrices Des. Codes Crypt. 64 287-308
[4]  
Rijmen V(2020)On construction of involutory MDS matrices from vandermonde matrices in Turk. J. Electr. Eng. Comput. Sci. 28 275-287
[5]  
Çengellenmiş Y(2016)On the automorphisms and isomorphisms of MDS matrices and their efficient implementations IACR Trans. Symm. Cryptol. 2016 95-113
[6]  
Roth RM(1949)Lightweight diffusion layer: importance of Toeplitz matrices Bell Syst. Tech. J. 28 656-715
[7]  
Lempel A(2021)Communication theory of secrecy systems Des. Codes Crypt. 89 1453-1483
[8]  
Sajadieh M(undefined)Construction of lightweight involutory MDS matrices undefined undefined undefined-undefined
[9]  
Dakhilalian M(undefined)undefined undefined undefined undefined-undefined
[10]  
Mala H(undefined)undefined undefined undefined undefined-undefined