Binary cyclic-gap constant weight codes with low-complexity encoding and decoding

被引:0
作者
Sasidharan, Birenjith [1 ]
Viterbo, Emanuele [1 ]
Dau, Son Hoang [2 ]
机构
[1] Monash Univ, ECSE Dept, Clayton, Vic, Australia
[2] RMIT Univ, Melbourne, Vic, Australia
基金
澳大利亚研究理事会;
关键词
Constant weight codes; Cyclic-gap code; Low complexity; Nonlinear codes; Binary codes; Enumerative coding; BOUNDS; CONSTRUCTIONS; UNRANKING;
D O I
10.1007/s10623-024-01494-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we focus on the design of binary constant weight codes that admit low-complexity encoding and decoding algorithms, and that have size M=2k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=2<^>k$$\end{document} so that codewords can conveniently be labeled with binary vectors of length k. For every integer & ell;>= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell \ge 3$$\end{document}, we construct a (n=2 & ell;,M=2k & ell;,d=2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n=2<^>\ell , M=2<^>{k_{\ell }}, d=2)$$\end{document} constant weight code C[& ell;]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathcal {C}}}}[\ell ]$$\end{document} of weight & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} by encoding information in the gaps between successive 1's of a vector, and call them as cyclic-gap constant weight codes. The code is associated with a finite integer sequence of length & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} satisfying a constraint defined as anchor-decodability that is pivotal to ensure low complexity for encoding and decoding. The time complexity of the encoding algorithm is linear in the input size k, and that of the decoding algorithm is poly-logarithmic in the input size n, discounting the linear time spent on parsing the input. Both the algorithms do not require expensive computation of binomial coefficients, unlike the case in many existing schemes. Among codes generated by all anchor-decodable sequences, we show that C[& ell;]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathcal {C}}}}[\ell ]$$\end{document} has the maximum size with k & ell;>=& ell;2-& ell;log2 & ell;+log2 & ell;-0.279 & ell;-0.721\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_{\ell } \ge \ell <^>2-\ell \log _2\ell + \log _2\ell - 0.279\ell - 0.721$$\end{document}. As k is upper bounded by & ell;2-& ell;log2 & ell;+O(& ell;)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell <^>2-\ell \log _2\ell +O(\ell )$$\end{document} information-theoretically, the code C[& ell;]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathcal {C}}}}[\ell ]$$\end{document} is optimal in its size with respect to two higher order terms of & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}. In particular, k & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_\ell $$\end{document} meets the upper bound for & ell;=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell =3$$\end{document} and one-bit away for & ell;=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell =4$$\end{document}. On the other hand, we show that C[& ell;]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathcal {C}}}}[\ell ]$$\end{document} is not unique in attaining k & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_{\ell }$$\end{document} by constructing an alternate code C<^>[& ell;]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{{\hat{C}}}[\ell ]$$\end{document} again parameterized by an integer & ell;>= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell \ge 3$$\end{document} with a different low-complexity decoder, yet having the same size 2k & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2<^>{k_{\ell }}$$\end{document} when 3 <=& ell;<= 7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3 \le \ell \le 7$$\end{document}. Finally, we also derive new codes by modifying C[& ell;]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathcal {C}}}}[\ell ]$$\end{document} that offer a wider range on blocklength and weight while retaining low complexity for encoding and decoding. For certain selected values of parameters, these modified codes too have an optimal k.
引用
收藏
页码:4247 / 4277
页数:31
相关论文
共 50 条
[31]   Product accumulate codes: A class of codes with near-capacity performance and low decoding complexity [J].
Li, J ;
Narayanan, KR ;
Georghiades, CN .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (01) :31-46
[32]   Constant-Weight and Constant-Charge Binary Run-Length Limited Codes [J].
Kurmaev, Oleg F. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (07) :4497-4515
[33]   A Low-Complexity RS Decoder for Triple-Error-Correcting RS Codes [J].
Yan, Zengchao ;
Lin, Jun ;
Wang, Zhongfeng .
2019 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI (ISVLSI 2019), 2019, :491-496
[34]   Constructions for optimal cyclic ternary constant-weight codes of weight four and distance six [J].
Lan, Liantao ;
Chang, Yanxun .
DISCRETE MATHEMATICS, 2018, 341 (04) :1010-1020
[35]   Low ML Decoding Complexity STBCs via Codes Over the Klein Group [J].
Natarajan, Lakshmi Prasad ;
Rajan, B. Sundar .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (12) :7950-7971
[36]   A Low-Complexity Double EP-Based Detector for Iterative Detection and Decoding in MIMO [J].
Jose Murillo-Fuentes, Juan ;
Santos, Irene ;
Carlos Aradillas, Jose ;
Sanchez-Fernandez, Matilde .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2021, 69 (03) :1538-1547
[37]   Binary permutation sequences as subsets of Levenshtein codes, spectral null codes, run-length limited codes and constant weight codes [J].
Ouahada, Khmaies ;
Swart, Theo G. ;
Ferreira, Hendrik C. ;
Cheng, Ling .
DESIGNS CODES AND CRYPTOGRAPHY, 2008, 48 (02) :141-154
[38]   Binary permutation sequences as subsets of Levenshtein codes, spectral null codes, run-length limited codes and constant weight codes [J].
Khmaies Ouahada ;
Theo G. Swart ;
Hendrik C. Ferreira ;
Ling Cheng .
Designs, Codes and Cryptography, 2008, 48 :141-154
[39]   A Case Study in Low-Complexity ECG Signal Encoding: How Compressing is Compressed Sensing? [J].
Cambareri, Valerio ;
Mangia, Mauro ;
Pareschi, Fabio ;
Rovatti, Riccardo ;
Setti, Gianluca .
IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (10) :1743-1747
[40]   Explicit Construction of Optimal Locally Recoverable Codes of Distance 5 and 6 via Binary Constant Weight Codes [J].
Jin, Lingfei .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (08) :4658-4663