Binary cyclic-gap constant weight codes with low-complexity encoding and decoding

被引:0
作者
Sasidharan, Birenjith [1 ]
Viterbo, Emanuele [1 ]
Dau, Son Hoang [2 ]
机构
[1] Monash Univ, ECSE Dept, Clayton, Vic, Australia
[2] RMIT Univ, Melbourne, Vic, Australia
基金
澳大利亚研究理事会;
关键词
Constant weight codes; Cyclic-gap code; Low complexity; Nonlinear codes; Binary codes; Enumerative coding; BOUNDS; CONSTRUCTIONS; UNRANKING;
D O I
10.1007/s10623-024-01494-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we focus on the design of binary constant weight codes that admit low-complexity encoding and decoding algorithms, and that have size M=2k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=2<^>k$$\end{document} so that codewords can conveniently be labeled with binary vectors of length k. For every integer & ell;>= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell \ge 3$$\end{document}, we construct a (n=2 & ell;,M=2k & ell;,d=2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n=2<^>\ell , M=2<^>{k_{\ell }}, d=2)$$\end{document} constant weight code C[& ell;]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathcal {C}}}}[\ell ]$$\end{document} of weight & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} by encoding information in the gaps between successive 1's of a vector, and call them as cyclic-gap constant weight codes. The code is associated with a finite integer sequence of length & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} satisfying a constraint defined as anchor-decodability that is pivotal to ensure low complexity for encoding and decoding. The time complexity of the encoding algorithm is linear in the input size k, and that of the decoding algorithm is poly-logarithmic in the input size n, discounting the linear time spent on parsing the input. Both the algorithms do not require expensive computation of binomial coefficients, unlike the case in many existing schemes. Among codes generated by all anchor-decodable sequences, we show that C[& ell;]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathcal {C}}}}[\ell ]$$\end{document} has the maximum size with k & ell;>=& ell;2-& ell;log2 & ell;+log2 & ell;-0.279 & ell;-0.721\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_{\ell } \ge \ell <^>2-\ell \log _2\ell + \log _2\ell - 0.279\ell - 0.721$$\end{document}. As k is upper bounded by & ell;2-& ell;log2 & ell;+O(& ell;)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell <^>2-\ell \log _2\ell +O(\ell )$$\end{document} information-theoretically, the code C[& ell;]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathcal {C}}}}[\ell ]$$\end{document} is optimal in its size with respect to two higher order terms of & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}. In particular, k & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_\ell $$\end{document} meets the upper bound for & ell;=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell =3$$\end{document} and one-bit away for & ell;=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell =4$$\end{document}. On the other hand, we show that C[& ell;]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathcal {C}}}}[\ell ]$$\end{document} is not unique in attaining k & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_{\ell }$$\end{document} by constructing an alternate code C<^>[& ell;]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{{\hat{C}}}[\ell ]$$\end{document} again parameterized by an integer & ell;>= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell \ge 3$$\end{document} with a different low-complexity decoder, yet having the same size 2k & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2<^>{k_{\ell }}$$\end{document} when 3 <=& ell;<= 7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3 \le \ell \le 7$$\end{document}. Finally, we also derive new codes by modifying C[& ell;]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathcal {C}}}}[\ell ]$$\end{document} that offer a wider range on blocklength and weight while retaining low complexity for encoding and decoding. For certain selected values of parameters, these modified codes too have an optimal k.
引用
收藏
页码:4247 / 4277
页数:31
相关论文
共 50 条
[21]   A low-complexity adaptive decoding algorithm for Turbo product code [J].
Han M. ;
Zhang J. ;
Zhao H. .
Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 2017, 48 (01) :141-147
[22]   Low-complexity multiuser channel estimation with aperiodic spreading codes [J].
Xu, ZY .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2001, 49 (11) :2813-2822
[23]   Low complexity algorithm for the decoding of convolutional codes of any rate [J].
Dany, JC ;
Antoine, J ;
Husson, L ;
Wautier, A ;
Paul, N ;
Brouet, J .
2004 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-7, 2004, :547-551
[24]   Low-Complexity Training for Binary Convolutional Neural Networks Based on Clipping-Aware Weight Update [J].
Ryu, Changho ;
Kim, Tae-Hwan .
IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2021, E104D (06) :919-922
[25]   Low-weight codewords in cyclic codes [J].
Coelho, J. G. ;
Martinez, F. E. Brochero .
DESIGNS CODES AND CRYPTOGRAPHY, 2025, 93 (05) :1295-1310
[26]   A low-complexity adaptive chase decoding algorithm for turbo product code [J].
Dang, Xiao-Yu ;
Tao, Jing ;
Yu, Xiang-Bin ;
Yang, Peng-Cheng .
Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2014, 36 (03) :739-743
[27]   Low-Complexity Detection of Binary CPM With Small Modulation Index [J].
Xi, Zhipeng ;
Zhu, Jiang ;
Fu, Yongming .
IEEE COMMUNICATIONS LETTERS, 2016, 20 (01) :57-60
[28]   Low-complexity content-aware encoding optimization of batch video [J].
Wu, Jiahao ;
Deng, Dexin ;
Li, Yilin ;
Yu, Lu ;
Li, Kai ;
Chen, Ying .
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2024, 104
[29]   The characterization of binary constant weight codes meeting the bound of Fu and Shen [J].
Fu, Fang-Wei ;
Xia, Shu-Tho .
DESIGNS CODES AND CRYPTOGRAPHY, 2007, 43 (01) :9-20
[30]   The characterization of binary constant weight codes meeting the bound of Fu and Shen [J].
Fang-Wei Fu ;
Shu-Tao Xia .
Designs, Codes and Cryptography, 2007, 43 :9-20