Binary cyclic-gap constant weight codes with low-complexity encoding and decoding

被引:0
作者
Sasidharan, Birenjith [1 ]
Viterbo, Emanuele [1 ]
Dau, Son Hoang [2 ]
机构
[1] Monash Univ, ECSE Dept, Clayton, Vic, Australia
[2] RMIT Univ, Melbourne, Vic, Australia
基金
澳大利亚研究理事会;
关键词
Constant weight codes; Cyclic-gap code; Low complexity; Nonlinear codes; Binary codes; Enumerative coding; BOUNDS; CONSTRUCTIONS; UNRANKING;
D O I
10.1007/s10623-024-01494-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we focus on the design of binary constant weight codes that admit low-complexity encoding and decoding algorithms, and that have size M=2k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=2<^>k$$\end{document} so that codewords can conveniently be labeled with binary vectors of length k. For every integer & ell;>= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell \ge 3$$\end{document}, we construct a (n=2 & ell;,M=2k & ell;,d=2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n=2<^>\ell , M=2<^>{k_{\ell }}, d=2)$$\end{document} constant weight code C[& ell;]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathcal {C}}}}[\ell ]$$\end{document} of weight & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} by encoding information in the gaps between successive 1's of a vector, and call them as cyclic-gap constant weight codes. The code is associated with a finite integer sequence of length & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} satisfying a constraint defined as anchor-decodability that is pivotal to ensure low complexity for encoding and decoding. The time complexity of the encoding algorithm is linear in the input size k, and that of the decoding algorithm is poly-logarithmic in the input size n, discounting the linear time spent on parsing the input. Both the algorithms do not require expensive computation of binomial coefficients, unlike the case in many existing schemes. Among codes generated by all anchor-decodable sequences, we show that C[& ell;]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathcal {C}}}}[\ell ]$$\end{document} has the maximum size with k & ell;>=& ell;2-& ell;log2 & ell;+log2 & ell;-0.279 & ell;-0.721\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_{\ell } \ge \ell <^>2-\ell \log _2\ell + \log _2\ell - 0.279\ell - 0.721$$\end{document}. As k is upper bounded by & ell;2-& ell;log2 & ell;+O(& ell;)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell <^>2-\ell \log _2\ell +O(\ell )$$\end{document} information-theoretically, the code C[& ell;]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathcal {C}}}}[\ell ]$$\end{document} is optimal in its size with respect to two higher order terms of & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}. In particular, k & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_\ell $$\end{document} meets the upper bound for & ell;=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell =3$$\end{document} and one-bit away for & ell;=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell =4$$\end{document}. On the other hand, we show that C[& ell;]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathcal {C}}}}[\ell ]$$\end{document} is not unique in attaining k & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_{\ell }$$\end{document} by constructing an alternate code C<^>[& ell;]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{{\hat{C}}}[\ell ]$$\end{document} again parameterized by an integer & ell;>= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell \ge 3$$\end{document} with a different low-complexity decoder, yet having the same size 2k & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2<^>{k_{\ell }}$$\end{document} when 3 <=& ell;<= 7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3 \le \ell \le 7$$\end{document}. Finally, we also derive new codes by modifying C[& ell;]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathcal {C}}}}[\ell ]$$\end{document} that offer a wider range on blocklength and weight while retaining low complexity for encoding and decoding. For certain selected values of parameters, these modified codes too have an optimal k.
引用
收藏
页码:4247 / 4277
页数:31
相关论文
共 50 条
  • [1] Error Exponents of LDPC Codes under Low-Complexity Decoding
    Rybin, Pavel
    Andreev, Kirin
    Zyablov, Victor
    ENTROPY, 2021, 23 (02) : 1 - 15
  • [2] A Low-Complexity MM-Sum Decoding Algorithm for LDPC Codes
    Li, Huan
    Guo, Jing
    Guo, Chen
    Wang, Donglin
    2017 17TH IEEE INTERNATIONAL CONFERENCE ON COMMUNICATION TECHNOLOGY (ICCT 2017), 2017, : 102 - 105
  • [3] CONSTRUCTIONS OF BINARY CONSTANT-WEIGHT CYCLIC CODES AND CYCLICALLY PERMUTABLE CODES
    NGUYEN, QA
    GYORFI, L
    MASSEY, JL
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (03) : 940 - 949
  • [4] Low-complexity Successive Cancellation List Decoding for Polar Codes based on SPRT
    Li, Wenpeng
    Du, Liping
    Chen, Yueyun
    2019 28TH WIRELESS AND OPTICAL COMMUNICATIONS CONFERENCE (WOCC), 2019, : 193 - 196
  • [5] Low decoding complexity of LDPC Codes over the Binary Erasure Channel
    Ivari, Sareh Majidi
    Soleymani, M. Reza
    Shayan, Yousef R.
    26TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE 2018), 2018, : 505 - 509
  • [6] Low-complexity Early Stopping Criterion for Belief Propagation Decoding of Polar Codes
    Zhang Xiaojun
    Li Na
    Dong Yanfei
    Cui Jianming
    Guo Hua
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2021, 43 (01) : 77 - 84
  • [7] A Novel Low-Complexity Joint Coding and Decoding Algorithm for NB-LDPC Codes
    Song, Suwen
    Tian, Jing
    Lin, Jun
    Wang, Zhongfeng
    2019 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2019,
  • [8] Distributed CRC scheme for low-complexity successive cancellation flip decoding of polar codes
    Kim, Haseong
    Lee, Hyunjee
    Park, Hosung
    ICT EXPRESS, 2022, 8 (03): : 409 - 413
  • [9] Complexity reduction scheme in encoding and decoding for Polar Codes
    Prakash, K. M.
    Sunitha, G. S.
    2016 IEEE INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ELECTRONICS, INFORMATION & COMMUNICATION TECHNOLOGY (RTEICT), 2016, : 1558 - 1562
  • [10] Non-Binary Diameter Perfect Constant-Weight Codes
    Etzion, Tuvi
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (02) : 891 - 904