共 57 条
- [1] Ali F., Bano A., Hassan T.U., Nazir M., Khan R.T., Plant Growth promoting Rhizobacteria Induced Modulation of physiological responses in Rice under Salt and Drought stresses, Pak J Bot, 55, 2, pp. 447-452, (2023)
- [2] Amirjani M.R., Effect of salinity stress on growth, sugar content, pigments and enzyme activity of rice, Int J Bot, 7, 1, pp. 73-81, (2011)
- [3] Arif Y., Singh P., Siddiqui H., Bajguz A., Hayat S., Salinity induced physiological and biochemical changes in plants: an omic approach towards salt stress tolerance, Plant Physiol Biochem, 156, pp. 64-77, (2020)
- [4] Asano T., Hakata M., Nakamura H., Aoki N., Komatsu S., Ichikawa H., Ohsugi R., Functional characterisation of OsCPK21, a calcium-dependent protein kinase that confers salt tolerance in rice, Plant Mol Biol, 75, pp. 179-191, (2011)
- [5] Ashraf M., Foolad M.R., Roles of glycine betaine and proline in improving plant abiotic stress resistance, Environ Exp Bot, 59, 2, pp. 206-216, (2007)
- [6] Bakshi M., Oelmuller R., WRKY transcription factors: Jack of many trades in plants, Plant Signal Behav, 9, 2, (2014)
- [7] Bates L., Waldren R., Teare I., Rapid determination of free proline for water-stress studies, Plant Soil, 39, pp. 205-207, (1973)
- [8] Chang J., Cheong B.E., Natera S., Roessner U., Morphological and metabolic responses to salt stress of rice (Oryza sativa L.) cultivars which differ in salinity tolerance, Plant Physiol Biochem, 144, pp. 427-435, (2019)
- [9] Chen T., Shabala S., Niu Y., Chen Z.-H., Shabala L., Meinke H., Zhou M., Molecular mechanisms of salinity tolerance in rice, Crop J, 9, 3, pp. 506-520, (2021)
- [10] Chinpongpanich A., Phean-O-Pas S., Thongchuang M., Qu L.-J., Buaboocha T., C-terminal extension of calmodulin-like 3 protein from Oryza sativa L.: interaction with a high mobility group target protein, Acta Biochim Biophys Sin, 47, 11, pp. 880-889, (2015)