A semilinear diffusion PDE with variable order time-fractional Caputo derivative subject to homogeneous Dirichlet boundary conditions

被引:0
|
作者
Slodicka, Marian [1 ]
机构
[1] Univ Ghent, Dept Elect & Informat Syst, Res Grp Numer Anal & Math Modeling NaM2, Krijgslaan 281,S8, B-9000 Ghent, Belgium
关键词
Fractional calculus (primary); Nonlinear time-fractional diffusion equation; Variable order; Volterra operator; Well-posedness; NUMERICAL-METHODS; EQUATIONS; MODELS;
D O I
10.1007/s13540-024-00352-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate a semilinear problem for a fractional diffusion equation with variable order Caputo fractional derivative (partial derivative(beta(t))(t) u) (t) subject to homogeneous Dirichlet boundary conditions. The right-hand side of the governing PDE is nonlinear (Lipschitz continuous) and it contains a weakly singular Volterra operator. The whole process unique solution in C([0, T], L-2(Omega)) if u(0) is an element of L-2(Omega). Moreover, if L-gamma u(0) is an element of L-2(Omega) takes place in a bounded Lipschitz domain in R d . We establish the existence of a for some 0 < gamma < 1 - delta/beta(0) (delta depends on the right-hand-side of the PDE) then L(gamma)u is an element of C ([0, T], L-2 (Omega)).
引用
收藏
页码:38 / 75
页数:38
相关论文
共 50 条
  • [1] On the regional boundary observability of semilinear time-fractional systems with Caputo derivative
    Zguaid, Khalid
    El Alaoui, Fatima Zahrae
    INTERNATIONAL JOURNAL OF OPTIMIZATION AND CONTROL-THEORIES & APPLICATIONS-IJOCTA, 2023, 13 (02): : 161 - 170
  • [2] A fast method for variable-order Caputo fractional derivative with applications to time-fractional diffusion equations
    Fang, Zhi-Wei
    Sun, Hai-Wei
    Wang, Hong
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (05) : 1443 - 1458
  • [3] Numerical framework for the Caputo time-fractional diffusion equation with fourth order derivative in space
    Arshad, Sadia
    Wali, Mubashara
    Huang, Jianfei
    Khalid, Sadia
    Akbar, Nosheen
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (05) : 3295 - 3316
  • [4] Numerical framework for the Caputo time-fractional diffusion equation with fourth order derivative in space
    Sadia Arshad
    Mubashara Wali
    Jianfei Huang
    Sadia Khalid
    Nosheen Akbar
    Journal of Applied Mathematics and Computing, 2022, 68 : 3295 - 3316
  • [5] Local discontinuous Galerkin approximations to variable-order time-fractional diffusion model based on the Caputo-Fabrizio fractional derivative
    Wei, Leilei
    Li, Wenbo
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 188 : 280 - 290
  • [6] A robust scheme for Caputo variable-order time-fractional diffusion-type equations
    Sadri, Khadijeh
    Hosseini, Kamyar
    Baleanu, Dumitru
    Salahshour, Soheil
    Hincal, Evren
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2023, 148 (12) : 5747 - 5764
  • [7] A robust scheme for Caputo variable-order time-fractional diffusion-type equations
    Khadijeh Sadri
    Kamyar Hosseini
    Dumitru Baleanu
    Soheil Salahshour
    Evren Hinçal
    Journal of Thermal Analysis and Calorimetry, 2023, 148 : 5747 - 5764
  • [8] Inverse problem of determining an order of the Caputo time-fractional derivative for a subdiffusion equation
    Alimov, Shavkat
    Ashurov, Ravshan
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2020, 28 (05): : 651 - 658
  • [9] On a singular time-fractional order wave equation with Bessel operator and Caputo derivative
    Mesloub, Said
    Bachar, Imed
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (01): : 60 - 70
  • [10] Numerical algorithm for solving time-fractional partial integrodifferential equations subject to initial and Dirichlet boundary conditions
    Abu Arqub, Omar
    Al-Smadi, Mohammed
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (05) : 1577 - 1597