Theoretical and experimental analysis of the modulated phase grating X-ray interferometer

被引:1
作者
Meyer, Hunter [1 ]
Dey, Joyoni [1 ]
Carr, Sydney [1 ,2 ]
Ham, Kyungmin [3 ]
Butler, Leslie G. [4 ]
Dooley, Kerry M. [5 ]
Hidrovo, Ivan [1 ,6 ]
Bleuel, Markus [7 ]
Varga, Tamas [8 ]
Schulz, Joachim [9 ,10 ]
Beckenbach, Thomas [9 ]
Kaiser, Konradin [9 ]
机构
[1] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[2] Navy Med, Naval Dosimetry Ctr, Bethesda, MD 20889 USA
[3] Louisiana State Univ, Ctr Adv Microstruct & Devices, Baton Rouge, LA 70806 USA
[4] Louisiana State Univ, Dept Chem, Baton Rouge, LA 70803 USA
[5] Louisiana State Univ, Cain Dept Chem Engn, Baton Rouge, LA 70803 USA
[6] Solon Espinosa Ayala Oncol Hosp, Dept Radiat Therapy, Quito, Ecuador
[7] Adelphi Technol Inc, Redwood City, CA 94063 USA
[8] Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA USA
[9] Microworks GmbH, Schnetzlerstr 9, D-76137 Karlsruhe, Germany
[10] Karlsruhe Inst Technol, Inst Microstruct Technol, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
基金
美国国家卫生研究院;
关键词
X-ray interferometry; Modulated phase grating; Diffraction grating; Dark-field; Porosity; COMPUTED-TOMOGRAPHY; CONTRAST; DISTRIBUTIONS;
D O I
10.1038/s41598-024-78133-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
X-ray grating interferometry allows for the simultaneous acquisition of attenuation, differential-phase contrast, and dark-field images, resulting from X-ray attenuation, refraction, and small-angle scattering, respectively. The modulated phase grating (MPG) interferometer is a recently developed grating interferometry system capable of generating a directly resolvable interference pattern using a relatively large period grating envelope function that is sampled at a pitch that is small enough that X-ray spatial coherence can be achieved by using a microfocus X-ray source or G0 grating. We present the theory of the MPG interferometry system for a 2-dimensional staggered grating, derived using Fourier optics, and we compare the theoretical predictions with experiments we have performed with a microfocus X-ray system at Pennington Biomedical Research Center, LSU. The theoretical and experimental fringe visibility is evaluated as a function of grating-to-detector distance. Additionally, quantitative experiments are performed with porous carbon and alumina compounds, and the mean normalized dark-field signal is compared with independent porosimetry measurements. Qualitative analysis of attenuation and dark-field images of a dried anchovy are shown.
引用
收藏
页数:15
相关论文
共 39 条
[1]   Bias of amplitude estimation using three-parameter sine fitting in the presence of additive noise [J].
Alegria, F. Correa .
MEASUREMENT, 2009, 42 (05) :748-756
[2]  
[Anonymous], 1999, XCOM: Photon cross section database
[3]   THE DETERMINATION OF PORE VOLUME AND AREA DISTRIBUTIONS IN POROUS SUBSTANCES .1. COMPUTATIONS FROM NITROGEN ISOTHERMS [J].
BARRETT, EP ;
JOYNER, LG ;
HALENDA, PP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1951, 73 (01) :373-380
[4]   In-vivo dark-field and phase-contrast x-ray imaging [J].
Bech, M. ;
Tapfer, A. ;
Velroyen, A. ;
Yaroshenko, A. ;
Pauwels, B. ;
Hostens, J. ;
Bruyndonckx, P. ;
Sasov, A. ;
Pfeiffer, F. .
SCIENTIFIC REPORTS, 2013, 3
[5]   Multicontrast x-ray computed tomography imaging using Talbot-Lau interferometry without phase stepping [J].
Bevins, Nicholas ;
Zambelli, Joseph ;
Li, Ke ;
Qi, Zhihua ;
Chen, Guang-Hong .
MEDICAL PHYSICS, 2012, 39 (01) :424-428
[6]   Early detection of fracture failure in SLM AM tension testing with Talbot-Lau neutron interferometry [J].
Brooks, Adam J. ;
Yao, Hong ;
Yuan, Jumao ;
Kio, Omoefe ;
Lowery, Caroline G. ;
Markoetter, Henning ;
Kardjilov, Nikolay ;
Guo, Shengmin ;
Butler, Leslie G. .
ADDITIVE MANUFACTURING, 2018, 22 :658-664
[7]  
Carr S.B., 2023, Master's Theses, P5796
[8]  
David Paganin, 2006, Coherent X-Ray Optics, V6
[9]  
Dey J., 2020, US Patent, Patent No. [10,872,708, 10872708]
[10]  
Dey J., 2022, US Patent, Patent No. [11,488,740B2, 11488740]