Adaptive neural network for quantum error mitigation

被引:0
作者
Adeniyi, Temitope Bolaji [1 ]
Kumar, Sathish A. P. [1 ]
机构
[1] Cleveland State Univ, Dept Elect Engn & Comp Sci, Cleveland, OH 44115 USA
关键词
Quantum computing; Machine learning; Quantum error mitigation; Quantum neural network; Deep learning;
D O I
10.1007/s42484-024-00234-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Quantum computing holds transformative promise, but its realization is hindered by the inherent susceptibility of quantum computers to errors. Quantum error mitigation has proved to be an enabling way to reduce computational error in present noisy intermediate scale quantum computers. This research introduces an innovative approach to quantum error mitigation by leveraging machine learning, specifically employing adaptive neural networks. With experiment and simulations done on 127-qubit IBM superconducting quantum computer, we were able to develop and train a neural network architecture to dynamically adjust output expectation values based on error characteristics. The model leverages a prior classifier module outcome on simulated quantum circuits with errors, and the antecedent neural network regression module adapts its parameters and response to each error characteristics. Results demonstrate the adaptive neural network's efficacy in mitigating errors across diverse quantum circuits and noise models, showcasing its potential to surpass traditional error mitigation techniques with an accuracy of 99% using the fully adaptive neural network for quantum error mitigation. This work presents a significant application of classical machine learning methods towards enhancing the robustness and reliability of quantum computations, providing a pathway for the practical realization of quantum computing technologies.
引用
收藏
页数:14
相关论文
共 30 条
  • [1] Genetic Algorithms for Error Mitigation in Quantum Measurement
    Acampora, Giovanni
    Grossi, Michele
    Vitiello, Autilia
    [J]. 2021 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC 2021), 2021, : 1826 - 1832
  • [2] Error Mitigation in Quantum Measurement through Fuzzy C-Means Clustering
    Acampora, Giovanni
    Vitiello, Autilia
    [J]. IEEE CIS INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS 2021 (FUZZ-IEEE), 2021,
  • [3] Quantum error mitigation
    Cai, Zhenyu
    Babbush, Ryan
    Benjamin, Simon C.
    Endo, Suguru
    Huggins, William J.
    Li, Ying
    Mcclean, Jarrod R.
    O'Brien, Thomas E.
    [J]. REVIEWS OF MODERN PHYSICS, 2023, 95 (04)
  • [4] Chatterjee Avimita, 2023, 2023 IEEE International Conference on Quantum Computing and Engineering (QCE), P70, DOI 10.1109/QCE57702.2023.00017
  • [5] Realization of quantum error correction
    Chiaverini, J
    Leibfried, D
    Schaetz, T
    Barrett, MD
    Blakestad, RB
    Britton, J
    Itano, WM
    Jost, JD
    Knill, E
    Langer, C
    Ozeri, R
    Wineland, DJ
    [J]. NATURE, 2004, 432 (7017) : 602 - 605
  • [6] Error mitigation with Clifford quantum-circuit data
    Czarnik, Piotr
    Arrasmith, Andrew
    Coles, Patrick J.
    Cincio, Lukasz
    [J]. QUANTUM, 2021, 5
  • [7] Selecting Machine Learning Algorithms using Regression Models
    Doan, Tri
    Kalita, Jugal
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOP (ICDMW), 2015, : 1498 - 1505
  • [8] Harvey S.P., Oxford Research Encyclopedia of Physics, DOI [10.1093/acrefore/9780190871994.001.0001/acrefore-9780190871994-e-83, DOI 10.1093/ACREFORE/9780190871994.001.0001/ACREFORE-9780190871994-E-83]
  • [9] IBM Quantum, 2021, IBM Quantum platform
  • [10] Jagadish V., 2018, QUANTA, V7, P54, DOI DOI 10.12743/QUANTA.V7I1.77