共 54 条
- [1] Improving the Transferability of Targeted Adversarial Examples through Object-Based Diverse Input [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 15223 - 15232
- [2] Towards Evaluating the Robustness of Neural Networks [J]. 2017 IEEE SYMPOSIUM ON SECURITY AND PRIVACY (SP), 2017, : 39 - 57
- [4] Cohen J, 2019, PR MACH LEARN RES, V97
- [5] Evading Defenses to Transferable Adversarial Examples by Translation-Invariant Attacks [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 4307 - 4316
- [6] Boosting Adversarial Attacks with Momentum [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 9185 - 9193
- [7] Gao Lianli, 2020, Computer Vision - ECCV 2020. 16th European Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12373), P307, DOI 10.1007/978-3-030-58604-1_19
- [8] Ge ZJ, 2023, Arxiv, DOI arXiv:2308.10601
- [9] Ge ZJ, 2023, Arxiv, DOI arXiv:2306.05225
- [10] Goodfellow IJ, 2014, PREPRINT, DOI DOI 10.48550/ARXIV.1412.6572