ImmuneApp for HLA-I epitope prediction and immunopeptidome analysis

被引:1
作者
Xu, Haodong [1 ,2 ]
Hu, Ruifeng [2 ,3 ,4 ]
Dong, Xianjun [3 ,4 ]
Kuang, Lan [1 ]
Zhang, Wenchao [1 ]
Tu, Chao [1 ]
Li, Zhihong [1 ]
Zhao, Zhongming [2 ,5 ,6 ]
机构
[1] Cent South Univ, Xiangya Hosp 2, Dept Orthopaed, Changsha 410011, Hunan, Peoples R China
[2] Univ Texas Hlth Sci Ctr Houston, Ctr Precis Hlth, Sch Biomed Informat, Houston, TX 77030 USA
[3] Harvard Med Sch, Brigham & Womens Hosp, Ctr Adv Parkinson Res, Boston, MA 02115 USA
[4] Harvard Med Sch, Brigham & Womens Hosp, Dept Neurol, Genom & Bioinformat Hub, Boston, MA 02115 USA
[5] UTHealth Grad Sch Biomed Sci, MD Anderson Canc Ctr UTHealth Grad Sch Biomed Sci, Houston, TX 77030 USA
[6] Univ Texas Hlth Sci Ctr Houston, Human Genet Ctr, Sch Publ Hlth, Houston, TX 77030 USA
基金
中国国家自然科学基金;
关键词
MHC CLASS-I; PEPTIDOME DECONVOLUTION; ANTIGEN PRESENTATION; ADAPTIVE IMMUNITY; BINDING; IMMUNOGENICITY; NEOANTIGENS; VACCINE; CELLS;
D O I
10.1038/s41467-024-53296-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Advances in mass spectrometry accelerates the characterization of HLA ligandome, necessitating the development of efficient methods for immunopeptidomics analysis and (neo)antigen prediction. We develop ImmuneApp, an interpretable deep learning framework trained on extensive HLA ligand datasets, which improves the prediction of HLA-I epitopes, prioritizes neoepitopes, and enhances immunopeptidomics deconvolution. ImmuneApp extracts informative embeddings and identifies key residues for pHLA binding. We also present a more accurate model-based deconvolution approach and systematically analyzed 216 multi-allelic immunopeptidomics samples, identifying 835,551 ligands restricted to over 100 HLA-I alleles. Our investigation reveals the effectiveness of the composite model, denoted as ImmuneApp-MA, which integrates mono- and multi-allelic data to enhance predictive performance. Leveraging ImmuneApp-MA as a pre-trained model, we built ImmuneApp-Neo, an immunogenicity predictor that outperforms existing methods for prioritizing immunogenic neoepitope. ImmuneApp demonstrates its utility across various immunopeptidomics datasets, which will promote the discovery of novel neoantigens and the development of new immunotherapies. The identification of HLA epitopes is essential for vaccine and immunotherapy development. Here, authors develop ImmuneApp using deep learning on extensive immunopeptidomics data, advancing antigen presentation prediction, neoepitope prioritisation, and immunopeptidomics deconvolution.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Co-expression of HLA-I loci improved prognostication in HER2+breast cancers
    Tsang, Julia Y.
    Ho, Chun-Sing
    Ni, Yun-Bi
    Shao, Yan
    Poon, Ivan K.
    Chan, Siu-Ki
    Cheung, Sai-Yin
    Shea, Ka-Ho
    Marabi, Monalyn
    Tse, Gary M.
    [J]. CANCER IMMUNOLOGY IMMUNOTHERAPY, 2020, 69 (05) : 799 - 811
  • [42] The Cancer Exome Generated by Alternative mRNA Splicing Dilutes Predicted HLA Class I Epitope Density
    Stranzl, Thomas
    Larsen, Mette V.
    Lund, Ole
    Nielsen, Morten
    Brunak, Soren
    [J]. PLOS ONE, 2012, 7 (09):
  • [43] Tumor Infiltrating Lymphocytes Target HLA-I Phosphopeptides Derived From Cancer Signaling in Colorectal Cancer
    Penny, Sarah A.
    Abelin, Jennifer G.
    Malaker, Stacy A.
    Myers, Paisley T.
    Saeed, Abu Z.
    Steadman, Lora G.
    Bai, Dina L.
    Ward, Stephen T.
    Shabanowitz, Jeffrey
    Hunt, Donald F.
    Cobbold, Mark
    [J]. FRONTIERS IN IMMUNOLOGY, 2021, 12
  • [44] Diversity in the HLA-I Recognition of HLA-F Monoclonal Antibodies: HLA-F or HLA-Ib Monospecific, HLA-E or HLA-G Bispecific Antibodies with or without HLA-Ia Reactivity
    Ravindranath, Mepur H.
    Ravindranath, Narendranath M.
    Amato-Menker, Carly J.
    El Hilali, Fatiha
    Filippone, Edward J.
    [J]. ANTIBODIES, 2024, 13 (01)
  • [45] The role of the interferon/JAK-STAT axis in driving islet HLA-I hyperexpression in type 1 diabetes
    Russell, Mark A.
    Richardson, Sarah J.
    Morgan, Noel G.
    [J]. FRONTIERS IN ENDOCRINOLOGY, 2023, 14
  • [46] ALK and RET Inhibitors Promote HLA Class I Antigen Presentation and Unmask New Antigens within the Tumor Immunopeptidome
    Oh, Claire Y.
    Klatt, Martin G.
    Bourne, Christopher
    Dao, Tao
    Dacek, Megan M.
    Brea, Elliott J.
    Mun, Sung Soo
    Chang, Aaron Y.
    Korontsvit, Tatyana
    Scheinberg, David A.
    [J]. CANCER IMMUNOLOGY RESEARCH, 2019, 7 (12) : 1984 - 1997
  • [47] The rigidity of a structural bridge on HLA-I binding groove explains its differential outcome in cancer immune response
    Zhou, Hong
    Chan, Kevin Chun
    Buratto, Damiano
    Zhou, Ruhong
    [J]. INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 253
  • [48] What Is the Role of HLA-I on Cancer Derived Extracellular Vesicles? Defining the Challenges in Characterisation and Potential Uses of This Ligandome
    Boyne, Caitlin
    Lennox, Debra
    Beech, Olivia
    Powis, Simon J.
    Kumar, Pankaj
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (24)
  • [49] TAP Mediates Import of Mycobacterium tuberculosis-Derived Peptides into Phagosomes and Facilitates Loading onto HLA-I
    Harriff, Melanie J.
    Burgdorf, Sven
    Kurts, Christian
    Wiertz, Emmanuel J. H. J.
    Lewinsohn, Deborah A.
    Lewinsohn, David M.
    [J]. PLOS ONE, 2013, 8 (11):
  • [50] Overexpression of KIR inhibitory ligands (HLA-I) determines that immunosurveillance of myeloma depends on diverse and strong NK cell licensing
    Martinez-Sanchez, Maria V.
    Periago, Adela
    Legaz, Isabel
    Gimeno, Lourdes
    Mrowiec, Anna
    Montes-Barqueros, Natividad R.
    Campillo, Jose A.
    Bolarin, Jose M.
    Bernardo, Maria V.
    Lopez-Alvarez, Maria R.
    Gonzalez, Consuelo
    Garcia-Garay, Maria C.
    Muro, Manuel
    Cabanas-Perianes, Valentin
    Fuster, Jose L.
    Garcia-Alonso, Ana M.
    Moraleda, Jose M.
    Alvarez-Lopez, Maria R.
    Minguela, Alfredo
    [J]. ONCOIMMUNOLOGY, 2016, 5 (04):