ImmuneApp for HLA-I epitope prediction and immunopeptidome analysis

被引:1
作者
Xu, Haodong [1 ,2 ]
Hu, Ruifeng [2 ,3 ,4 ]
Dong, Xianjun [3 ,4 ]
Kuang, Lan [1 ]
Zhang, Wenchao [1 ]
Tu, Chao [1 ]
Li, Zhihong [1 ]
Zhao, Zhongming [2 ,5 ,6 ]
机构
[1] Cent South Univ, Xiangya Hosp 2, Dept Orthopaed, Changsha 410011, Hunan, Peoples R China
[2] Univ Texas Hlth Sci Ctr Houston, Ctr Precis Hlth, Sch Biomed Informat, Houston, TX 77030 USA
[3] Harvard Med Sch, Brigham & Womens Hosp, Ctr Adv Parkinson Res, Boston, MA 02115 USA
[4] Harvard Med Sch, Brigham & Womens Hosp, Dept Neurol, Genom & Bioinformat Hub, Boston, MA 02115 USA
[5] UTHealth Grad Sch Biomed Sci, MD Anderson Canc Ctr UTHealth Grad Sch Biomed Sci, Houston, TX 77030 USA
[6] Univ Texas Hlth Sci Ctr Houston, Human Genet Ctr, Sch Publ Hlth, Houston, TX 77030 USA
基金
中国国家自然科学基金;
关键词
MHC CLASS-I; PEPTIDOME DECONVOLUTION; ANTIGEN PRESENTATION; ADAPTIVE IMMUNITY; BINDING; IMMUNOGENICITY; NEOANTIGENS; VACCINE; CELLS;
D O I
10.1038/s41467-024-53296-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Advances in mass spectrometry accelerates the characterization of HLA ligandome, necessitating the development of efficient methods for immunopeptidomics analysis and (neo)antigen prediction. We develop ImmuneApp, an interpretable deep learning framework trained on extensive HLA ligand datasets, which improves the prediction of HLA-I epitopes, prioritizes neoepitopes, and enhances immunopeptidomics deconvolution. ImmuneApp extracts informative embeddings and identifies key residues for pHLA binding. We also present a more accurate model-based deconvolution approach and systematically analyzed 216 multi-allelic immunopeptidomics samples, identifying 835,551 ligands restricted to over 100 HLA-I alleles. Our investigation reveals the effectiveness of the composite model, denoted as ImmuneApp-MA, which integrates mono- and multi-allelic data to enhance predictive performance. Leveraging ImmuneApp-MA as a pre-trained model, we built ImmuneApp-Neo, an immunogenicity predictor that outperforms existing methods for prioritizing immunogenic neoepitope. ImmuneApp demonstrates its utility across various immunopeptidomics datasets, which will promote the discovery of novel neoantigens and the development of new immunotherapies. The identification of HLA epitopes is essential for vaccine and immunotherapy development. Here, authors develop ImmuneApp using deep learning on extensive immunopeptidomics data, advancing antigen presentation prediction, neoepitope prioritisation, and immunopeptidomics deconvolution.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Impact of predicted HLA class I immunopeptidome on viral reservoir in a cohort of people living with HIV in Italy
    Rovatti, Pier Edoardo
    Muccini, Camilla
    Punta, Marco
    Galli, Laura
    Mainardi, Ilaria
    Ponta, Giacomo
    Vago, Luca Aldo Edoardo
    Castagna, Antonella
    HLA, 2024, 103 (01)
  • [32] HLA I immunopeptidome of synthetic long peptide pulsed human dendritic cells for therapeutic vaccine design
    Kessler, Amy L.
    Pieterman, Roel F. A.
    Doff, Wouter A. S.
    Bezstarosti, Karel
    Bouzid, Rachid
    Klarenaar, Kim
    Jansen, Diahann T. S. L.
    Luijten, Robbie J.
    Demmers, Jeroen A. A.
    Buschow, Sonja I.
    NPJ VACCINES, 2025, 10 (01)
  • [33] COVID-19 coronavirus vaccine T cell epitope prediction analysis based on distributions of HLA class I loci (HLA-A, -B, -C) across global populations
    Cun, Yina
    Li, Chuanyin
    Shi, Lei
    Sun, Ming
    Dai, Shuying
    Sun, Le
    Shi, Li
    Yao, Yufeng
    HUMAN VACCINES & IMMUNOTHERAPEUTICS, 2021, 17 (04) : 1097 - 1108
  • [34] Identification of HLA-I restricted epitopes in six vaccine candidates of Leishmania tropica using immunoinformatics and molecular dynamics simulation approaches
    Akya, Alisha
    Farasat, Alireza
    Ghadiri, Keyghobad
    Rostamian, Mosayeb
    INFECTION GENETICS AND EVOLUTION, 2019, 75
  • [35] The Amount of Surface HLA-I on T Lymphocytes Decreases in Breast Infiltrating Ductal Carcinoma Patients
    Zhao, S.
    Yang, X.
    Lu, N.
    Zhang, Y.
    Li, X.
    Li, Y.
    Zhou, Y.
    Wan, F.
    Zou, X.
    JOURNAL OF INTERNATIONAL MEDICAL RESEARCH, 2011, 39 (02) : 508 - 513
  • [36] Prioritizing candidate peptides for cancer vaccines through predicting peptide presentation by HLA-I proteins
    Zhou, Laura Y.
    Zou, Fei
    Sun, Wei
    BIOMETRICS, 2023, 79 (03) : 2664 - 2676
  • [37] Conformational Variants of the Individual HLA-I Antigens on Luminex Single Antigen Beads Used in Monitoring HLA Antibodies: Problems and Solutions
    Jucaud, Vadim
    Ravindranath, Mepur H.
    Terasaki, Paul I.
    TRANSPLANTATION, 2017, 101 (04) : 764 - 777
  • [38] Interactions of HLA-DR and Topoisomerase I Epitope Modulated Genetic Risk for Systemic Sclerosis
    Kongkaew, Sirilak
    Rungrotmongkol, Thanyada
    Punwong, Chutintorn
    Noguchi, Hiroshi
    Takeuchi, Fujio
    Kungwan, Nawee
    Wolschann, Peter
    Hannongbua, Supot
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [39] DiscovEpi: automated whole proteome MHC-I-epitope prediction and visualization
    Mahncke, C.
    Schmiedeke, F.
    Simm, S.
    Kaderali, L.
    Broeker, B. M.
    Seifert, U.
    Cammann, C.
    BMC BIOINFORMATICS, 2024, 25 (01):
  • [40] A Combination of Positive Tumor HLA-I and Negative PD-L1 Expression Provides an Immune Rejection Mechanism in Bladder Cancer
    Francisco Flores-Martin, Jose
    Perea, Francisco
    Exposito-Ruiz, Manuela
    Javier Carretero, Francisco
    Rodriguez, Teresa
    Villamediana, Marina
    Ruiz-Cabello, Francisco
    Garrido, Federico
    Manuel Cozar-Olmo, Jose
    Aptsiauri, Natalia
    ANNALS OF SURGICAL ONCOLOGY, 2019, 26 (08) : 2631 - 2639