ImmuneApp for HLA-I epitope prediction and immunopeptidome analysis

被引:1
|
作者
Xu, Haodong [1 ,2 ]
Hu, Ruifeng [2 ,3 ,4 ]
Dong, Xianjun [3 ,4 ]
Kuang, Lan [1 ]
Zhang, Wenchao [1 ]
Tu, Chao [1 ]
Li, Zhihong [1 ]
Zhao, Zhongming [2 ,5 ,6 ]
机构
[1] Cent South Univ, Xiangya Hosp 2, Dept Orthopaed, Changsha 410011, Hunan, Peoples R China
[2] Univ Texas Hlth Sci Ctr Houston, Ctr Precis Hlth, Sch Biomed Informat, Houston, TX 77030 USA
[3] Harvard Med Sch, Brigham & Womens Hosp, Ctr Adv Parkinson Res, Boston, MA 02115 USA
[4] Harvard Med Sch, Brigham & Womens Hosp, Dept Neurol, Genom & Bioinformat Hub, Boston, MA 02115 USA
[5] UTHealth Grad Sch Biomed Sci, MD Anderson Canc Ctr UTHealth Grad Sch Biomed Sci, Houston, TX 77030 USA
[6] Univ Texas Hlth Sci Ctr Houston, Human Genet Ctr, Sch Publ Hlth, Houston, TX 77030 USA
基金
中国国家自然科学基金;
关键词
MHC CLASS-I; PEPTIDOME DECONVOLUTION; ANTIGEN PRESENTATION; ADAPTIVE IMMUNITY; BINDING; IMMUNOGENICITY; NEOANTIGENS; VACCINE; CELLS;
D O I
10.1038/s41467-024-53296-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Advances in mass spectrometry accelerates the characterization of HLA ligandome, necessitating the development of efficient methods for immunopeptidomics analysis and (neo)antigen prediction. We develop ImmuneApp, an interpretable deep learning framework trained on extensive HLA ligand datasets, which improves the prediction of HLA-I epitopes, prioritizes neoepitopes, and enhances immunopeptidomics deconvolution. ImmuneApp extracts informative embeddings and identifies key residues for pHLA binding. We also present a more accurate model-based deconvolution approach and systematically analyzed 216 multi-allelic immunopeptidomics samples, identifying 835,551 ligands restricted to over 100 HLA-I alleles. Our investigation reveals the effectiveness of the composite model, denoted as ImmuneApp-MA, which integrates mono- and multi-allelic data to enhance predictive performance. Leveraging ImmuneApp-MA as a pre-trained model, we built ImmuneApp-Neo, an immunogenicity predictor that outperforms existing methods for prioritizing immunogenic neoepitope. ImmuneApp demonstrates its utility across various immunopeptidomics datasets, which will promote the discovery of novel neoantigens and the development of new immunotherapies. The identification of HLA epitopes is essential for vaccine and immunotherapy development. Here, authors develop ImmuneApp using deep learning on extensive immunopeptidomics data, advancing antigen presentation prediction, neoepitope prioritisation, and immunopeptidomics deconvolution.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] T-epitope designer: A HLA-peptide binding prediction server
    Kangueane, Pandjassarame
    Sakharkar, Meena Kishore
    BIOINFORMATION, 2005, 1 (01) : 21 - 24
  • [22] Emerging enterococcus pore-forming toxins with MHC/HLA-I as receptors
    Xiong, Xiaozhe
    Tian, Songhai
    Yang, Pan
    Lebreton, Francois
    Bao, Huan
    Sheng, Kuanwei
    Yin, Linxiang
    Chen, Pengsheng
    Zhang, Jie
    Qi, Wanshu
    Ruan, Jianbin
    Wu, Hao
    Chen, Hong
    Breault, David T.
    Wu, Hao
    Earl, Ashlee M.
    Gilmore, Michael S.
    Abraham, Jonathan
    Dong, Min
    CELL, 2022, 185 (07) : 1157 - +
  • [23] Mild Acid Elution and MHC Immunoaffinity Chromatography Reveal Similar Albeit Not Identical Profiles of the HLA Class I Immunopeptidome
    Sturm, Theo
    Sautter, Benedikt
    Worner, Tobias P.
    Stevanovic, Stefan
    Rammensee, Hans-Georg
    Planz, Oliver
    Heck, Albert J. R.
    Aebersold, Ruedi
    JOURNAL OF PROTEOME RESEARCH, 2021, 20 (01) : 289 - 304
  • [24] Meta learning for mutant HLA class I epitope immunogenicity prediction to accelerate cancer clinical immunotherapy
    Xu, Long
    Yang, Qiang
    Dong, Weihe
    Li, Xiaokun
    Wang, Kuanquan
    Dong, Suyu
    Zhang, Xianyu
    Yang, Tiansong
    Luo, Gongning
    Liao, Xingyu
    Gao, Xin
    Wang, Guohua
    BRIEFINGS IN BIOINFORMATICS, 2024, 26 (01)
  • [25] Alterations in HLA Class I-Presented Immunopeptidome and Class I-Interactome upon Osimertinib Resistance in EGFR Mutant Lung Adenocarcinoma
    Qi, Yue A.
    Maity, Tapan K.
    Gao, Shaojian
    Gong, Tao
    Bahta, Meriam
    Venugopalan, Abhilash
    Zhang, Xu
    Guha, Udayan
    CANCERS, 2021, 13 (19)
  • [26] Risk assessment of cancer patients based on HLA-I alleles, neobinders and expression of cytokines
    Dhall, Anjali
    Patiyal, Sumeet
    Kaur, Harpreet
    Raghava, Gajendra P. S.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 167
  • [27] Diverse HLA-I Peptide Repertoires of the APC Lines MUTZ3-Derived Immature and Mature Dendritic Cells and THP1-Derived Macrophages
    Nyambura, Lydon Wainaina
    Jarmalavicius, Saulius
    Baleeiro, Renato Brito
    Walden, Peter
    JOURNAL OF IMMUNOLOGY, 2016, 197 (06) : 2102 - 2109
  • [28] Association study of TAP and HLA-I gene combination with chronic hepatitis C virus infection in a Han population in China
    Tao, Yufen
    Han, Xue
    Liu, Nannan
    Shi, Lei
    Shi, Li
    Liu, Shuyuan
    Yao, Yufeng
    INTERNATIONAL JOURNAL OF IMMUNOGENETICS, 2022, 49 (03) : 169 - 180
  • [29] Promiscuous Binding of Invariant Chain-Derived CLIP Peptide to Distinct HLA-I Molecules Revealed in Leukemic Cells
    van Luijn, Marvin M.
    de Loosdrecht, Arjan A. van
    Lampen, Margit H.
    van Veelen, Peter A.
    Zevenbergen, Adri
    Kester, Michel G. D.
    de Ru, Arnoud H.
    Ossenkoppele, Gert J.
    van Hall, Thorbald
    van Ham, S. Marieke
    PLOS ONE, 2012, 7 (04):
  • [30] Consequences of HLA-associated mutations in HIV-1 subtype C Nef on HLA-I downregulation ability
    Mann, Jaclyn K.
    Rajkoomar, Erasha
    Jin, Steven W.
    Mkhize, Qiniso
    Baiyegunhi, Omolara
    Mbona, Pholisiwe
    Brockman, Mark A.
    Ndung'u, Thumbi
    JOURNAL OF MEDICAL VIROLOGY, 2020, 92 (08) : 1182 - 1190