ImmuneApp for HLA-I epitope prediction and immunopeptidome analysis

被引:1
|
作者
Xu, Haodong [1 ,2 ]
Hu, Ruifeng [2 ,3 ,4 ]
Dong, Xianjun [3 ,4 ]
Kuang, Lan [1 ]
Zhang, Wenchao [1 ]
Tu, Chao [1 ]
Li, Zhihong [1 ]
Zhao, Zhongming [2 ,5 ,6 ]
机构
[1] Cent South Univ, Xiangya Hosp 2, Dept Orthopaed, Changsha 410011, Hunan, Peoples R China
[2] Univ Texas Hlth Sci Ctr Houston, Ctr Precis Hlth, Sch Biomed Informat, Houston, TX 77030 USA
[3] Harvard Med Sch, Brigham & Womens Hosp, Ctr Adv Parkinson Res, Boston, MA 02115 USA
[4] Harvard Med Sch, Brigham & Womens Hosp, Dept Neurol, Genom & Bioinformat Hub, Boston, MA 02115 USA
[5] UTHealth Grad Sch Biomed Sci, MD Anderson Canc Ctr UTHealth Grad Sch Biomed Sci, Houston, TX 77030 USA
[6] Univ Texas Hlth Sci Ctr Houston, Human Genet Ctr, Sch Publ Hlth, Houston, TX 77030 USA
基金
中国国家自然科学基金;
关键词
MHC CLASS-I; PEPTIDOME DECONVOLUTION; ANTIGEN PRESENTATION; ADAPTIVE IMMUNITY; BINDING; IMMUNOGENICITY; NEOANTIGENS; VACCINE; CELLS;
D O I
10.1038/s41467-024-53296-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Advances in mass spectrometry accelerates the characterization of HLA ligandome, necessitating the development of efficient methods for immunopeptidomics analysis and (neo)antigen prediction. We develop ImmuneApp, an interpretable deep learning framework trained on extensive HLA ligand datasets, which improves the prediction of HLA-I epitopes, prioritizes neoepitopes, and enhances immunopeptidomics deconvolution. ImmuneApp extracts informative embeddings and identifies key residues for pHLA binding. We also present a more accurate model-based deconvolution approach and systematically analyzed 216 multi-allelic immunopeptidomics samples, identifying 835,551 ligands restricted to over 100 HLA-I alleles. Our investigation reveals the effectiveness of the composite model, denoted as ImmuneApp-MA, which integrates mono- and multi-allelic data to enhance predictive performance. Leveraging ImmuneApp-MA as a pre-trained model, we built ImmuneApp-Neo, an immunogenicity predictor that outperforms existing methods for prioritizing immunogenic neoepitope. ImmuneApp demonstrates its utility across various immunopeptidomics datasets, which will promote the discovery of novel neoantigens and the development of new immunotherapies. The identification of HLA epitopes is essential for vaccine and immunotherapy development. Here, authors develop ImmuneApp using deep learning on extensive immunopeptidomics data, advancing antigen presentation prediction, neoepitope prioritisation, and immunopeptidomics deconvolution.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Analysis of Secondary Structure Biases in Naturally Presented HLA-I Ligands
    Perez, Marta A. S.
    Bassani-Sternberg, Michal
    Coukos, George
    Gfeller, David
    Zoete, Vincent
    FRONTIERS IN IMMUNOLOGY, 2019, 10
  • [2] Therapeutic Potential of HLA-I Polyreactive mAbs Mimicking the HLA-I Polyreactivity and Immunoregulatory Functions of IVIg
    Ravindranath, Mepur H.
    Hilali, Fatiha El
    Filippone, Edward J.
    VACCINES, 2021, 9 (06)
  • [3] The transition from HLA-I positive to HLA-I negative primary tumors: the road to escape from T-cell responses
    Aptsiauri, Natalia
    Ruiz-Cabello, Francisco
    Garrido, Federico
    CURRENT OPINION IN IMMUNOLOGY, 2018, 51 : 123 - 132
  • [4] Comprehensive Analysis of the Naturally Processed Peptide Repertoire: Differences between HLA-A and B in the Immunopeptidome
    Schellens, Ingrid M. M.
    Hoof, Ilka
    Meiring, Hugo D.
    Spijkers, Sanne N. M.
    Poelen, Martien C. M.
    van Gaans-van den Brink, Jacqueline A. M.
    van der Poel, Kees
    Costa, Ana I.
    van Els, Cecile A. C. M.
    van Baarle, Debbie
    Kesmir, Can
    PLOS ONE, 2015, 10 (09):
  • [5] The Mycobacterium tuberculosis Phagosome Is a HLA-I Processing Competent Organelle
    Grotzke, Jeff E.
    Harriff, Melanie J.
    Siler, Anne C.
    Nolt, Dawn
    Delepine, Jacob
    Lewinsohn, Deborah A.
    Lewinsohn, David M.
    PLOS PATHOGENS, 2009, 5 (04)
  • [6] HLA-I and HLA-II Peptidomes of SARS-CoV-2: A Review
    Abd El-Baky, Nawal
    Amara, Amro A.
    Redwan, Elrashdy M.
    VACCINES, 2023, 11 (03)
  • [7] Integrated analysis reveals prognostic value of HLA-I LOH in triple-negative breast cancer
    Zhou, Yi-Fan
    Xiao, Yi
    Jin, Xi
    Di, Geng-Hong
    Jiang, Yi-Zhou
    Shao, Zhi-Ming
    JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2021, 9 (10)
  • [8] The C-terminal extension landscape of naturally presented HLA-I ligands
    Guillaume, Philippe
    Picaud, Sarah
    Baumgaertner, Petra
    Montandon, Nicole
    Schmidt, Julien
    Speiser, Daniel E.
    Coukos, George
    Bassani-Sternberg, Michal
    Filippakopoulos, Panagis
    Gfeller, David
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (20) : 5083 - 5088
  • [9] A large peptidome dataset improves HLA class I epitope prediction across most of the human population
    Sarkizova, Siranush
    Klaeger, Susan
    Le, Phuong M.
    Li, Letitia W.
    Oliveira, Giacomo
    Keshishian, Hasmik
    Hartigan, Christina R.
    Zhang, Wandi
    Braun, David A.
    Ligon, Keith L.
    Bachireddy, Pavan
    Zervantonakis, Ioannis K.
    Rosenbluth, Jennifer M.
    Ouspenskaia, Tamara
    Law, Travis
    Justesen, Sune
    Stevens, Jonathan
    Lane, William J.
    Eisenhaure, Thomas
    Lan Zhang, Guang
    Clauser, Karl R.
    Hacohen, Nir
    Carr, Steven A.
    Wu, Catherine J.
    Keskin, Derin B.
    NATURE BIOTECHNOLOGY, 2020, 38 (02) : 199 - +
  • [10] The Plasticity of Mesenchymal Stem Cells in Regulating Surface HLA-I
    Wang, Yafei
    Huang, Jiayun
    Gong, Lin
    Yu, Dongsheng
    An, Chenrui
    Bunpetch, Varitsara
    Dai, Jun
    Huang, He
    Zou, Xiaohui
    Ouyang, Hongwei
    Liu, Hua
    ISCIENCE, 2019, 15 : 66 - +