Deep learning algorithms for predicting pathological complete response in MRI of rectal cancer patients undergoing neoadjuvant chemoradiotherapy: a systematic review

被引:0
作者
Jong, Bor-Kang [1 ,2 ]
Yu, Zhen-Hao [1 ,2 ]
Hsu, Yu-Jen [1 ,2 ]
Chiang, Sum-Fu [1 ,2 ]
You, Jeng-Fu [1 ,2 ]
Chern, Yih-Jong [1 ,2 ]
机构
[1] Chang Gung Mem Hosp, Dept Surg, Colorectal Sect, Taoyuan, Taiwan
[2] Chang Gung Univ, Sch Med, Taoyuan, Taiwan
关键词
Artificial intelligence; Rectal cancer; Neoadjuvant chemoradiotherapy; Magnetic resonance imaging; Pathological complete response; PREOPERATIVE CHEMORADIOTHERAPY; CHEMORADIATION THERAPY; OPEN-LABEL; CHEMOTHERAPY;
D O I
10.1007/s00384-025-04809-w
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
PurposeThis systematic review examines the utility of deep learning algorithms in predicting pathological complete response (pCR) in rectal cancer patients undergoing neoadjuvant chemoradiotherapy (nCRT). The primary goal is to evaluate the performance of MRI-based artificial intelligence (AI) models and explore factors affecting their diagnostic accuracy.MethodsThe review followed PRISMA guidelines and is registered with PROSPERO (CRD42024628017). Literature searches were conducted in PubMed, Embase, and Cochrane Library using keywords such as "artificial intelligence," "rectal cancer," "MRI," and "pathological complete response." Articles involving deep learning models applied to MRI for predicting pCR were included, excluding non-MRI data and studies without AI applications. Data on study characteristics, MRI sequences, AI model details, and performance metrics were extracted. Quality assessment was performed using the PROBAST tool.ResultsOut of 512 initial records, 26 studies met the inclusion criteria. Most studies demonstrated promising diagnostic performance, with AUC values for external validation typically exceeding 0.8. The use of T2W and diffusion-weighted imaging (DWI) MRI phases enhanced model accuracy compared to T2W alone. Larger datasets generally correlated with improved model performance. However, heterogeneity in model designs, MRI protocols, and the limited integration of clinical data were noted as challenges.ConclusionAI-enhanced MRI demonstrates significant potential in predicting pCR in rectal cancer, particularly with T2W + DWI sequences and larger datasets. While integrating clinical data remains controversial, standardizing methodologies and expanding datasets will further enhance model robustness and clinical utility.
引用
收藏
页数:15
相关论文
共 51 条
  • [1] Diagnostic accuracy of MRI in assessing tumor regression and identifying complete response in patients with locally advanced rectal cancer after neoadjuvant treatment
    Aker, Medhat
    Boone, Darren
    Chandramohan, Anuradha
    Sizer, Bruce
    Motson, Roger
    Arulampalam, Tan
    [J]. ABDOMINAL RADIOLOGY, 2018, 43 (12) : 3213 - 3219
  • [2] Short-course radiotherapy followed by chemotherapy before total mesorectal excision (TME) versus preoperative chemoradiotherapy, TME, and optional adjuvant chemotherapy in locally advanced rectal cancer (RAPIDO): a randomised, open-label, phase 3 trial
    Bahadoer, Renu R.
    Dijkstra, Esmee A.
    van Etten, Boudewijn
    Marijnen, Corrie A. M.
    Putter, Hein
    Kranenbarg, Elma Meershoek-Klein
    Roodvoets, Annet G. H.
    Nagtegaal, Iris D.
    Beets-Tan, Regina G. H.
    Blomqvist, Lennart K.
    Fokstuen, Tone
    ten Tije, Albert J.
    Capdevila, Jaume
    Hendriks, Mathijs P.
    Edhemovic, Ibrahim
    Cervantes, Andres
    Nilsson, Per J.
    Glimelius, Bengt
    van de Velde, Cornelis J. H.
    Hospers, Geke A. P.
    [J]. LANCET ONCOLOGY, 2021, 22 (01) : 29 - 42
  • [3] Feasibility of transperineal minimal invasive surgery when performing sacrectomy for advanced primary and recurrent pelvic malignancies
    Beppu, N.
    Ito, K.
    Otani, M.
    Imada, A.
    Matsubara, T.
    Song, J.
    Kimura, K.
    Kataoka, K.
    Kuwahara, R.
    Horio, Y.
    Uchino, M.
    Ikeuchi, H.
    Ikeda, M.
    [J]. TECHNIQUES IN COLOPROCTOLOGY, 2024, 28 (01)
  • [4] Deep Learning and Radiomics predict complete response after neo-adjuvant chemoradiation for locally advanced rectal cancer
    Bibault, Jean-Emmanuel
    Giraud, Philippe
    Durdux, Catherine
    Taieb, Julien
    Berger, Anne
    Coriat, Romain
    Chaussade, Stanislas
    Dousset, Bertrand
    Nordlinger, Bernard
    Burgun, Anita
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [5] Feature selection based on unsupervised clustering evaluation for predicting neoadjuvant chemoradiation response for patients with locally advanced rectal cancer
    Chen, Hao
    Li, Xing
    Pan, Xiaoying
    Qiang, Yongqian
    Qi, X. Sharon
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (23)
  • [6] Long-course preoperative chemoradiation versus 5 x 5 Gy and consolidation chemotherapy for clinical T4 and fixed clinical T3 rectal cancer: long-term results of the randomized Polish II study
    Cisel, B.
    Pietrzak, L.
    Michalski, W.
    Wyrwicz, L.
    Rutkowski, A.
    Kosakowska, E.
    Cencelewicz, A.
    Spalek, M.
    Polkowski, W.
    Jankiewicz, M.
    Stylinski, R.
    Bebenek, M.
    Kapturkiewicz, B.
    Maciejczyk, A.
    Sadowski, J.
    Zygulska, J.
    Zegarski, W.
    Jankowski, M.
    Las-Jankowska, M.
    Toczko, Z.
    Zelazowska-Omiotek, U.
    Kepka, L.
    Socha, J.
    Wasilewska-Tesluk, E.
    Markiewicz, W.
    Kladny, J.
    Majewski, A.
    Kapuscinski, W.
    Suwinski, R.
    Bujko, K.
    [J]. ANNALS OF ONCOLOGY, 2019, 30 (08) : 1298 - 1303
  • [7] Neoadjuvant chemotherapy with FOLFIRINOX and preoperative chemoradiotherapy for patients with locally advanced rectal cancer (UNICANCER-PRODIGE 23) : a multicentre, randomised, open-label, phase 3 trial
    Conroy, Thierry
    Bosset, Jean-Francois
    Etienne, Pierre-Luc
    Rio, Emmanuel
    Francois, Eric
    Mesgouez-Nebout, Nathalie
    Vendrely, Veronique
    Artignan, Xavier
    Bouche, Olivier
    Gargot, Dany
    Boige, Valerie
    Bonichon-Lamichhane, Nathalie
    Louvet, Christophe
    Morand, Clotilde
    de la Fouchardiere, Christelle
    Lamfichekh, Najib
    Juzyna, Beata
    Jouffroy-Zeller, Claire
    Rullier, Eric
    Marchal, Frederic
    Gourgou, Sophie
    Castan, Florence
    Borg, Christophe
    [J]. LANCET ONCOLOGY, 2021, 22 (05) : 702 - 715
  • [8] Diffusion-weighted magnetic resonance imaging in locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy
    De Felice, F.
    Magnante, A. L.
    Musio, D.
    Ciolina, M.
    De Cecco, C. N.
    Rengo, M.
    Laghi, A.
    Tombolini, V.
    [J]. EJSO, 2017, 43 (07): : 1324 - 1329
  • [9] MRI-based clinical-radiomics model predicts tumor response before treatment in locally advanced rectal cancer
    Delli Pizzi, Andrea
    Chiarelli, Antonio Maria
    Chiacchiaretta, Piero
    d'Annibale, Martina
    Croce, Pierpaolo
    Rosa, Consuelo
    Mastrodicasa, Domenico
    Trebeschi, Stefano
    Lambregts, Doenja Marina Johanna
    Caposiena, Daniele
    Serafini, Francesco Lorenzo
    Basilico, Raffaella
    Cocco, Giulio
    Di Sebastiano, Pierluigi
    Cinalli, Sebastiano
    Ferretti, Antonio
    Wise, Richard Geoffrey
    Genovesi, Domenico
    Beets-Tan, Regina G. H.
    Caulo, Massimo
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [10] Automated Prediction of the Response to Neoadjuvant Chemoradiotherapy in Patients Affected by Rectal Cancer
    Filitto, Giuseppe
    Coppola, Francesca
    Curti, Nico
    Giampieri, Enrico
    Dall'Olio, Daniele
    Merlotti, Alessandra
    Cattabriga, Arrigo
    Cocozza, Maria Adriana
    Taninokuchi Tomassoni, Makoto
    Remondini, Daniel
    Pierotti, Luisa
    Strigari, Lidia
    Cuicchi, Dajana
    Guido, Alessandra
    Rihawi, Karim
    D'Errico, Antonietta
    Di Fabio, Francesca
    Poggioli, Gilberto
    Morganti, Alessio Giuseppe
    Ricciardiello, Luigi
    Golfieri, Rita
    Castellani, Gastone
    [J]. CANCERS, 2022, 14 (09)