Fast Video Object Segmentation Based on Siamese Networks

被引:0
作者
Fu L.-H. [1 ]
Zhao Y. [1 ]
Sun X.-W. [1 ]
Lu Z.-S. [1 ]
Wang D. [1 ]
Yang H.-X. [1 ]
机构
[1] Faculty of Information Technology, Beijing University of Technology, Beijing
来源
Tien Tzu Hsueh Pao/Acta Electronica Sinica | 2020年 / 48卷 / 04期
关键词
Computer vision; Deep learning; Feature space; Siamese network; Video object segmentation;
D O I
10.3969/j.issn.0372-2112.2020.04.001
中图分类号
学科分类号
摘要
Video object segmentation (VOS) is a research hotspot in the field of computer vision.Traditional VOS based on deep learning fine-tunes the deep network online, which leads to long time-consuming segmentation and is difficult to meet real-time requirements.Therefore, we propose a fast VOS method.First, the weight-shared siamese encoder subnet maps the reference stream and the target stream to the same feature space; so that the same objects have similar features.Then, the global feature extraction subnet matches the features similar to the given object to locate the object.Finally, the decoder subnet restores the object features and gets edge information by connecting the low-level features of target stream to output the mask.Experiments on public benchmark datasets show that our method improves the speed significantly and achieves good performance. © 2020, Chinese Institute of Electronics. All right reserved.
引用
收藏
页码:625 / 630
页数:5
相关论文
共 24 条
[1]  
Caelles S., Maninis K.K., Pont-Tuset J., Et al., One-shot video object segmentation, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5320-5329, (2017)
[2]  
Shin Yoon J., Rameau F., Kim J., Et al., Pixel-level matching for video object segmentation using convolutional neural networks, Proceedings of the IEEE International Conference on Computer Vision, pp. 2167-2176, (2017)
[3]  
Voigtlaender P., Leibe B., Online adaptation of convolutional neural networks for video object segmentation, Proceedings of the British Machine Vision Conference, pp. 1942-1958, (2017)
[4]  
Yang L., Wang Y., Xiong X., Et al., Efficient video object segmentation via network modulation, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6499-6507, (2018)
[5]  
Chen Y., Pont-Tuset J., Montes A., Et al., Blazingly fast video object segmentation with pixel-wise metric learning, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1189-1198, (2018)
[6]  
Maninis K.K., Caelles S., Chen Y., Et al., Video object segmentation without temporal information, IEEE Transactions on PAMI, 41, 6, pp. 1515-1530, (2018)
[7]  
Perazzi F., Khoreva A., Benenson R., Et al., Learning video object segmentation from static images, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3491-3500, (2017)
[8]  
Tsai Y.H., Yang M.H., Black M.J., Video segmentation via object flow, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3899-3908, (2016)
[9]  
Jang W.D., Kim C.S., Online video object segmentation via convolutional trident network, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7474-7483, (2017)
[10]  
Cheng J., Tsai Y.H., Hung W.C., Et al., Fast and accurate online video object segmentation via tracking parts, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7415-7424, (2018)