Deep learning-based lymph node metastasis status predicts prognosis from muscle-invasive bladder cancer histopathology

被引:0
作者
Zheng, Qingyuan [1 ,2 ]
Jiao, Panpan [1 ,2 ]
Yang, Rui [1 ,2 ]
Fan, Junjie [3 ,4 ]
Liu, Yunxun [1 ,2 ]
Yang, Xiangxiang [1 ,2 ]
Yuan, Jingping [5 ]
Chen, Zhiyuan [1 ,2 ]
Liu, Xiuheng [1 ,2 ]
机构
[1] Wuhan Univ, Renmin Hosp, Dept Urol, 99 Zhang Zhi Dong Rd, Wuhan 430060, Hubei, Peoples R China
[2] Wuhan Univ, Renmin Hosp, Inst Urol Dis, Wuhan 430060, Hubei, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Chinese Acad Sci, Inst Software, Trusted Comp & Informat Assurance Lab, Beijing 100190, Peoples R China
[5] Wuhan Univ, Renmin Hosp, Dept Pathol, Wuhan 430060, Hubei, Peoples R China
关键词
Bladder cancer; Digital pathology; Deep learning; Lymph node metastasis; Artificial intelligence; Prognostic analysis;
D O I
10.1007/s00345-025-05440-8
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
PurposeTo develop a deep learning (DL) model based on primary tumor tissue to predict the lymph node metastasis (LNM) status of muscle invasive bladder cancer (MIBC), while validating the prognostic value of the predicted aiN score in MIBC patients. MethodsA total of 323 patients from The Cancer Genome Atlas (TCGA) were used as the training and internal validation set, with image features extracted using a visual encoder called UNI. We investigated the ability to predict LNM status while assessing the prognostic value of aiN score. External validation was conducted on 139 patients from Renmin Hospital of Wuhan University (RHWU; Wuhan, China). ResultsThe DL model achieved area under the receiver operating characteristic curves of 0.79 (95% confidence interval [CI], 0.69-0.88) in the internal validation set for predicting LNM status, and 0.72 (95% CI, 0.68-0.75) in the external validation set. In multivariable Cox analysis, the model-predicted aiN score emerged as an independent predictor of survival for MIBC patients, with a hazard ratio of 1.608 (95% CI, 1.128-2.291; p = 0.008) in the TCGA cohort and 2.746 (95% CI, 1.486-5.076; p < 0.001) in the RHWU cohort. Additionally, the aiN score maintained prognostic value across different subgroups. ConclusionIn this study, DL-based image analysis showed promising results by directly extracting relevant prognostic information from H&E-stained histology to predict the LNM status of MIBC patients. It might be used for personalized management of MIBC patients following prospective validation in the future.
引用
收藏
页数:9
相关论文
共 28 条
  • [21] Deep learning approach to predict lymph node metastasis directly from primary tumour histology in prostate cancer
    Wessels, Frederik
    Schmitt, Max
    Krieghoff-Henning, Eva
    Jutzi, Tanja
    Worst, Thomas S.
    Waldbillig, Frank
    Neuberger, Manuel
    Maron, Roman C.
    Steeg, Matthias
    Gaiser, Timo
    Hekler, Achim
    Utikal, Jochen S.
    Von Kalle, Christof
    Froehling, Stefan
    Michel, Maurice S.
    Nuhn, Philipp
    Brinker, Titus J.
    [J]. BJU INTERNATIONAL, 2021, 128 (03) : 352 - 360
  • [22] European Association of Urology Guidelines on Muscle-invasive and Metastatic Bladder Cancer: Summary of the 2023 Guidelines
    Witjes, J. Alfred
    Bruins, Harman Max
    Carrion, Albert
    Cathomas, Richard
    Comperat, Eva
    Efstathiou, Jason A.
    Fietkau, Rainer
    Gakis, Georgios
    Lorch, Anja
    Martini, Alberto
    Mertens, Laura S.
    Meijer, Richard P.
    Milowsky, Matthew I.
    Neuzillet, Yann
    Panebianco, Valeria
    Redlef, John
    Rink, Michael
    Rouanne, Mathieu
    Thalmann, George N.
    Saebjornsen, Saebjorn
    Veskimae, Erik
    Heijden, Antoine G. van der
    [J]. EUROPEAN UROLOGY, 2024, 85 (01) : 17 - 31
  • [23] Deep Learning Predicts Molecular Subtype of Muscle-invasive Bladder Cancer from Conventional Histopathological Slides
    Woerl, Ann-Christin
    Eckstein, Markus
    Geiger, Josephine
    Wagner, Daniel C.
    Daher, Tamas
    Stenzel, Philipp
    Fernandez, Aurelie
    Hartmann, Arndt
    Wand, Michael
    Roth, Wilfried
    Foersch, Sebastian
    [J]. EUROPEAN UROLOGY, 2020, 78 (02) : 256 - 264
  • [24] A Genomic-clinicopathologic Nomogram for the Preoperative Prediction of Lymph Node Metastasis in Bladder Cancer
    Wu, Shao-Xu
    Huang, Jian
    Liu, Zhuo-Wei
    Chen, Hai-Ge
    Guo, Pi
    Cai, Qing-Qing
    Zheng, Jun-Jiong
    Qin, Hai-De
    Zheng, Zao-Song
    Chen, Xin
    Zhang, Rui-Yun
    Chen, Si-Liang
    Lin, Tian-Xin
    [J]. EBIOMEDICINE, 2018, 31 : 54 - 65
  • [25] A Radiomics Nomogram for the Preoperative Prediction of Lymph Node Metastasis in Bladder Cancer
    Wu, Shaoxu
    Zheng, Junjiong
    Li, Yong
    Yu, Hao
    Shi, Siya
    Xie, Weibin
    Liu, Hao
    Su, Yangfan
    Huang, Jian
    Lin, Tianxin
    [J]. CLINICAL CANCER RESEARCH, 2017, 23 (22) : 6904 - 6911
  • [26] Predicting Lymph Node Metastasis Status from Primary Muscle-Invasive Bladder Cancer Histology Slides Using Deep Learning: A Retrospective Multicenter Study
    Zheng, Qingyuan
    Jian, Jun
    Wang, Jingsong
    Wang, Kai
    Fan, Junjie
    Xu, Huazhen
    Ni, Xinmiao
    Yang, Song
    Yuan, Jingping
    Wu, Jiejun
    Jiao, Panpan
    Yang, Rui
    Chen, Zhiyuan
    Liu, Xiuheng
    Wang, Lei
    [J]. CANCERS, 2023, 15 (11)
  • [27] Accurate Diagnosis and Survival Prediction of Bladder Cancer Using Deep Learning on Histological Slides
    Zheng, Qingyuan
    Yang, Rui
    Ni, Xinmiao
    Yang, Song
    Xiong, Lin
    Yan, Dandan
    Xia, Lingli
    Yuan, Jingping
    Wang, Jingsong
    Jiao, Panpan
    Wu, Jiejun
    Hao, Yiqun
    Wang, Jianguo
    Guo, Liantao
    Jiang, Zhengyu
    Wang, Lei
    Chen, Zhiyuan
    Liu, Xiuheng
    [J]. CANCERS, 2022, 14 (23)
  • [28] Lymphatic vessel density as a predictor of lymph node metastasis and its relationship with prognosis in urothelial carcinoma of the bladder
    Zhou, Mi
    He, Leye
    Zu, Xiongbing
    Zhang, Huihui
    Zeng, Huaide
    Qi, Lin
    [J]. BJU INTERNATIONAL, 2011, 107 (12) : 1930 - 1935