Deep learning-based lymph node metastasis status predicts prognosis from muscle-invasive bladder cancer histopathology

被引:0
作者
Zheng, Qingyuan [1 ,2 ]
Jiao, Panpan [1 ,2 ]
Yang, Rui [1 ,2 ]
Fan, Junjie [3 ,4 ]
Liu, Yunxun [1 ,2 ]
Yang, Xiangxiang [1 ,2 ]
Yuan, Jingping [5 ]
Chen, Zhiyuan [1 ,2 ]
Liu, Xiuheng [1 ,2 ]
机构
[1] Wuhan Univ, Renmin Hosp, Dept Urol, 99 Zhang Zhi Dong Rd, Wuhan 430060, Hubei, Peoples R China
[2] Wuhan Univ, Renmin Hosp, Inst Urol Dis, Wuhan 430060, Hubei, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Chinese Acad Sci, Inst Software, Trusted Comp & Informat Assurance Lab, Beijing 100190, Peoples R China
[5] Wuhan Univ, Renmin Hosp, Dept Pathol, Wuhan 430060, Hubei, Peoples R China
关键词
Bladder cancer; Digital pathology; Deep learning; Lymph node metastasis; Artificial intelligence; Prognostic analysis;
D O I
10.1007/s00345-025-05440-8
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
PurposeTo develop a deep learning (DL) model based on primary tumor tissue to predict the lymph node metastasis (LNM) status of muscle invasive bladder cancer (MIBC), while validating the prognostic value of the predicted aiN score in MIBC patients. MethodsA total of 323 patients from The Cancer Genome Atlas (TCGA) were used as the training and internal validation set, with image features extracted using a visual encoder called UNI. We investigated the ability to predict LNM status while assessing the prognostic value of aiN score. External validation was conducted on 139 patients from Renmin Hospital of Wuhan University (RHWU; Wuhan, China). ResultsThe DL model achieved area under the receiver operating characteristic curves of 0.79 (95% confidence interval [CI], 0.69-0.88) in the internal validation set for predicting LNM status, and 0.72 (95% CI, 0.68-0.75) in the external validation set. In multivariable Cox analysis, the model-predicted aiN score emerged as an independent predictor of survival for MIBC patients, with a hazard ratio of 1.608 (95% CI, 1.128-2.291; p = 0.008) in the TCGA cohort and 2.746 (95% CI, 1.486-5.076; p < 0.001) in the RHWU cohort. Additionally, the aiN score maintained prognostic value across different subgroups. ConclusionIn this study, DL-based image analysis showed promising results by directly extracting relevant prognostic information from H&E-stained histology to predict the LNM status of MIBC patients. It might be used for personalized management of MIBC patients following prospective validation in the future.
引用
收藏
页数:9
相关论文
共 28 条
  • [1] Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology
    Bera, Kaustav
    Schalper, Kurt A.
    Rimm, David L.
    Velcheti, Vamsidhar
    Madabhushi, Anant
    [J]. NATURE REVIEWS CLINICAL ONCOLOGY, 2019, 16 (11) : 703 - 715
  • [2] Deep learning identifies inflamed fat as a risk factor for lymph node metastasis in early colorectal cancer
    Brockmoeller, Scarlet
    Echle, Amelie
    Laleh, Narmin Ghaffari
    Eiholm, Susanne
    Malmstrom, Marie Louise
    Kuhlmann, Tine Plato
    Levic, Katarina
    Grabsch, Heike Irmgard
    West, Nicholas P.
    Saldanha, Oliver Lester
    Kouvidi, Katerina
    Bono, Aurora
    Heij, Lara R.
    Brinker, Titus J.
    Gogenur, Ismayil
    Quirke, Philip
    Kather, Jakob Nikolas
    [J]. JOURNAL OF PATHOLOGY, 2022, 256 (03) : 269 - 281
  • [3] Towards a general-purpose foundation model for computational pathology
    Chen, Richard J.
    Ding, Tong
    Lu, Ming Y.
    Williamson, Drew F. K.
    Jaume, Guillaume
    Song, Andrew H.
    Chen, Bowen
    Zhang, Andrew
    Shao, Daniel
    Shaban, Muhammad
    Williams, Mane
    Oldenburg, Lukas
    Weishaupt, Luca L.
    Wang, Judy J.
    Vaidya, Anurag
    Le, Long Phi
    Gerber, Georg
    Sahai, Sharifa
    Williams, Walt
    Mahmood, Faisal
    [J]. NATURE MEDICINE, 2024, 30 (03) : 850 - 862
  • [4] Current best practice for bladder cancer: a narrative review of diagnostics and treatments
    Comperat, Eva
    Amin, Mahul B.
    Cathomas, Richard
    Choudhury, Ananya
    De Santis, Maria
    Kamat, Ashish
    Stenzl, Arnulf
    Thoeny, Harriet C.
    Witjes, Johannes Alfred
    [J]. LANCET, 2022, 400 (10364) : 1712 - 1721
  • [5] Inflammation and cancer: What a surgical oncologist should know
    Dupre, Aurelien
    Malik, Hassan Z.
    [J]. EJSO, 2018, 44 (05): : 566 - 570
  • [6] Deep learning in cancer pathology: a new generation of clinical biomarkers
    Echle, Amelie
    Rindtorff, Niklas Timon
    Brinker, Titus Josef
    Luedde, Tom
    Pearson, Alexander Thomas
    Kather, Jakob Nikolas
    [J]. BRITISH JOURNAL OF CANCER, 2021, 124 (04) : 686 - 696
  • [7] Proposal for a Novel Histological Scoring System as a Potential Grading Approach for Muscle-invasive Urothelial Bladder Cancer Correlating with Disease Aggressiveness and Patient Outcomes
    Eckstein, Markus
    Matek, Christian
    Wagner, Paul
    Erber, Ramona
    Buettner-Herold, Maike
    Wild, Peter J.
    Taubert, Helge
    Wach, Sven
    Sikic, Danijel
    Wullich, Bernd
    Geppert, Carol I.
    Comperat, Eva M.
    Lopez-Beltran, Antonio
    Montironi, Rodolfo
    Cheng, Liang
    van der Kwast, Theodorus
    Colecchia, Maurizio
    van Rhijn, Bas W. G.
    Amin, Mahul B.
    Netto, George J.
    Lehmann, Jan
    Stoeckle, Michael
    Junker, Kerstin
    Hartmann, Arndt
    Bertz, Simone
    [J]. EUROPEAN UROLOGY ONCOLOGY, 2024, 7 (01): : 128 - 138
  • [8] Inflammation and Cancer: Triggers, Mechanisms, and Consequences
    Greten, Florian R.
    Grivennikov, Sergei, I
    [J]. IMMUNITY, 2019, 51 (01) : 27 - 41
  • [9] Multiresolution Application of Artificial Intelligence in Digital Pathology for Prediction of Positive Lymph Nodes From Primary Tumors in Bladder Cancer
    Harmon, Stephanie A.
    Sanford, Thomas H.
    Brown, G. Thomas
    Yang, Chris
    Mehralivand, Sherif
    Jacob, Joseph M.
    Valera, Vladimir A.
    Shih, Joanna H.
    Agarwal, Piyush K.
    Choyke, Peter L.
    Turkbey, Baris
    [J]. JCO CLINICAL CANCER INFORMATICS, 2020, 4 : 367 - 382
  • [10] Deep learning can predict lymph node status directly from histology in colorectal cancer
    Kiehl, Lennard
    Kuntz, Sara
    Hoehn, Julia
    Jutzi, Tanja
    Krieghoff-Henning, Eva
    Kather, Jakob N.
    Holland-Letz, Tim
    Kopp-Schneider, Annette
    Chang-Claude, Jenny
    Brobeil, Alexander
    von Kalle, Christof
    Froehling, Stefan
    Alwers, Elizabeth
    Brenner, Hermann
    Hoffmeister, Michael
    Brinker, Titus J.
    [J]. EUROPEAN JOURNAL OF CANCER, 2021, 157 : 464 - 473