Analysis of the Staggered DG Method for the Quasi-Newtonian Stokes flows

被引:0
|
作者
Liu, Jingyu [1 ]
Liu, Yang [2 ]
Zhao, Lina [1 ]
机构
[1] City Univ Hong Kong, Dept Math, Kowloon Tong, Hong Kong, Peoples R China
[2] Donghua Univ, Coll Informat Sci & Technol, 2999 North Renmin Rd, Shanghai 201620, Peoples R China
关键词
Discontinuous Galerkin methods; Quasi-Newtonian Stokes flow; Polygonal mesh; Hybridization; DISCONTINUOUS GALERKIN METHODS; FINITE-ELEMENT APPROXIMATION; BOUNDARY-VALUE-PROBLEMS; AUGMENTED HDG METHOD; MINIMAL DIMENSION; ERROR-BOUNDS; A-PRIORI; EQUATIONS; FLUID;
D O I
10.1007/s10915-024-02741-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper introduces and analyzes a staggered discontinuous Galerkin (DG) method for quasi-Newtonian Stokes flow problems on polytopal meshes. The method introduces the flux and tensor gradient of the velocity as additional unknowns and eliminates the pressure variable via the incompressibility condition. Thanks to the subtle construction of the finite element spaces used in our staggered DG method, no additional numerical flux or stabilization terms are needed. Based on the abstract theory for the non-linear twofold saddle point problems, we prove the well-posedness of our scheme. A priori error analysis for all the involved unknowns is also provided. In addition, the proposed scheme can be hybridizable and the global problem only involves the trace variables, rendering the method computationally attractive. Finally, several numerical experiments are carried out to illustrate the performance of our scheme.
引用
收藏
页数:32
相关论文
共 50 条
  • [31] Finite element approximations for quasi-Newtonian flows employing a multi-field GLS method
    Zinani, Flavia
    Frey, Sergio
    COMPUTATIONAL MECHANICS, 2011, 48 (02) : 139 - 152
  • [32] A posteriori error estimators for nonconforming approximation of some quasi-Newtonian flows
    Padra, C
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (04) : 1600 - 1615
  • [33] Numerical approximation of a quasi-Newtonian Stokes flow problem with defective boundary conditions
    Ervin, Vincent J.
    Lee, Hyesuk
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (05) : 2120 - 2140
  • [34] A Posteriori error estimators for nonconforming approximation of some quasi-newtonian flows
    Centro Atómico Bariloche, Comn. Nac. de Ener. Atómica, 8400 Bariloche, Río Negro, Argentina
    SIAM J Numer Anal, 4 (1600-1615):
  • [35] On Steady Flows of Quasi-Newtonian Fluids in Orlicz-Sobolev Spaces
    Balaadich, Farah
    Azroul, Elhoussine
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2021, 17 (03) : 263 - 279
  • [36] A Posteriori Error Estimators for the Quasi-Newtonian Stokes Problem with a General Boundary Condition
    El Moutea, Omar
    El Ouadefli, Lahcen
    El Akkad, Abdeslam
    Nakbi, Nadia
    Elkhalfi, Ahmed
    Scutaru, Maria Luminita
    Vlase, Sorin
    MATHEMATICS, 2023, 11 (08)
  • [37] A mixed finite element method for a quasi-Newtonian fluid flow
    Farhloul, M
    Zine, AM
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2004, 20 (06) : 803 - 819
  • [38] Existence results for steady flows of quasi-Newtonian fluids using weak monotonicity
    Arada, N
    Sequeira, A
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2005, 7 (Suppl 2) : S273 - S288
  • [39] FOUR-FIELD FINITE ELEMENT SOLVER AND SENSITIVITIES FOR QUASI-NEWTONIAN FLOWS
    Martin, N.
    Monnier, J.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (05): : S132 - S165
  • [40] Two-sided a posteriori error bounds for incompressible quasi-Newtonian flows
    Berrone, Stefano
    Suli, Endre
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2008, 28 (02) : 382 - 421