On the parabolization of equations for the propagation of small disturbances in two-dimensional boundary layers

被引:0
作者
Boiko, A. V. [1 ]
Demyanko, K. V. [1 ]
Zasko, G. V. [1 ]
Nechepurenko, Yu. M. [1 ]
机构
[1] Marchuk Inst Numer Math RAS, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
laminar incompressible boundary layers; linearized disturbance propagation equations; spatial instability; Tollmien-Schlichting waves; G & ouml; rtler vortices; spectral reduction; algebraic reduction; GORTLER VORTICES; STABILITY; INSTABILITY; TRANSITION; SURFACE; FLOWS;
D O I
10.1134/S0869864324030016
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The work is devoted to modeling the disturbance propagation in viscous incompressible laminar boundary layers, using linearized equations for disturbance amplitudes. Along with the numerical model based on original linearized equations, the article considers three models based on equations derived from the original ones by neglecting the streamwise pressure gradient, or the streamwise viscous terms, or both. The models are compared numerically by the example of generation and propagation of disturbances in the boundary layer over a slightly concave plate. Conclusions are drawn about the feasibility of the same simplified models to adequately simulate both Tollmien-Schlichting waves and G & ouml;rtler vortices in a range of practically important parameters.
引用
收藏
页码:393 / 410
页数:18
相关论文
共 32 条
  • [1] Optimal disturbances and bypass transition in boundary layers
    Andersson, P
    Berggren, M
    Henningson, DS
    [J]. PHYSICS OF FLUIDS, 1999, 11 (01) : 134 - 150
  • [2] SHEARING FLOW OVER A WAVY BOUNDARY
    BENJAMIN, TB
    [J]. JOURNAL OF FLUID MECHANICS, 1959, 6 (02) : 161 - 205
  • [3] Bertolotti FP., 1991, Theor. Comput. Fluid Dyn, V3, P117, DOI [10.1007/BF00271620, DOI 10.1007/BF00271620]
  • [4] Asymptotic boundary conditions for computing the position of laminar-turbulent transition by the eN-method
    Boiko, A. V.
    Demyanko, K. V.
    Nechepurenko, Yu. M.
    [J]. THERMOPHYSICS AND AEROMECHANICS, 2019, 26 (02) : 179 - 194
  • [5] Numerical Analysis of Spatial Hydrodynamic Stability of Shear Flows in Ducts of Constant Cross Section
    Boiko, A. V.
    Demyanko, K. V.
    Nechepurenko, Yu. M.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2018, 58 (05) : 700 - 713
  • [6] Excitation of unsteady Gortler vortices by localized surface nonuniformities
    Boiko, A. V.
    Ivanov, A. V.
    Kachanov, Yu. S.
    Mischenko, D. A.
    Nechepurenko, Yu. M.
    [J]. THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2017, 31 (01) : 67 - 88
  • [7] Investigation of weakly-nonlinear development of unsteady Gortler vortices
    Boiko, A. V.
    Ivanov, A. V.
    Kachanov, Yu S.
    Mischenko, D. A.
    [J]. THERMOPHYSICS AND AEROMECHANICS, 2010, 17 (04) : 455 - 481
  • [8] Steady and unsteady Gortler boundary-layer instability on concave wall
    Boiko, A. V.
    Ivanov, A. V.
    Kachanov, Y. S.
    Mischenko, D. A.
    [J]. EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2010, 29 (02) : 61 - 83
  • [9] Numerical Spectral Analysis of Temporal Stability of Laminar Duct Flows with Constant Cross Sections
    Boiko, A. V.
    Nechepurenko, Yu. M.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2008, 48 (10) : 1699 - 1714
  • [10] Boiko A.V., 2012, PHYS TRANSITIONAL SH, V98, DOI DOI 10.1007/978-94-007-2498-3