Optimal system of Lie sub-algebras and numerical solution for shock wave in rotating non-ideal dusty gas with monochromatic radiation

被引:0
作者
Nath, G. [1 ]
Maurya, Abhay [1 ]
机构
[1] Motilal Nehru Natl Inst Technol Allahabad, Dept Math, Prayagraj 211004, Uttar Pradesh, India
关键词
Lie group theoretic technique; Non-ideal dusty gas; Rotating medium; Similarity solution; Shock waves; ONE-DIMENSIONAL MOTION; SELF-SIMILAR SOLUTION; SMALL SOLID PARTICLES; HEAD-ON COLLISION; BLAST WAVE; PROPAGATION; STABILITY; PISTON; EQUATIONS; DYNAMICS;
D O I
10.1007/s10665-024-10408-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the present article, we have obtained the similarity solutions with the help of optimal system of Lie sub-algebras and numerical method for the cylindrical shock wave formed by a moving piston in a non-ideal dusty gas in a rotating medium with the impact of monochromatic radiation. The Lie group theoretic technique is used to obtain the optimal system of Lie sub-algebras for the fundamental equations in the case of 1-D (one-dimensional) flow. By using the Lie group theoretic technique, we are able to drive the similarity and numerical solution for both the power and exponential law shock paths. The similarity solutions with power law shock path in two different cases (i.e., Cases Ia, Ib) are obtained in Case I. Also, in Case II, the similarity solutions exist in two different cases with power law shock path (i.e., Cases IIa, IIc) and in two different cases with exponential law shock path (i.e., Cases IIb, IId) which are discussed in detail. The results presented in Cases Ib, IIa, IIb, IIc, and IId are newly obtained results. The numerical solutions in the power law shock path for Case Ia and the exponential law shock path in Case IIb are performed, and the distribution of the physical flow variables in the flow field region behind the shock front is obtained. The impacts of the several problematic physical parameters on the shock strength and on the physical flow variable are studied. In the present study, it is found that with an increment in the value of the initial ratio of the density of solid particles to the species density of the gas (G1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{1}$$\end{document}), the shock strength increases, whereas the shock strength decreases with an increment in the gas non-ideality parameter (omega<overline>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{\omega }$$\end{document}). For the lower value of G1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{1}$$\end{document} (i.e., for G1=6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{1} = 6$$\end{document}), the shock strength decreases, whereas for a higher value of G1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{1}$$\end{document} (i.e. , for G1=20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{1} = 20$$\end{document} or 100), the shock strength increases with an increment in the mass concentration of the solid particles in the mixture (mu p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{p}$$\end{document}).
引用
收藏
页数:57
相关论文
共 50 条
[41]   Self-similar flow behind a spherical shock wave in a non-ideal dusty gas under a gravitational field: Isothermal flow [J].
Nath, G. .
ADVANCES IN SPACE RESEARCH, 2013, 52 (07) :1304-1313
[42]   A self-similar solution for unsteady adiabatic and isothermal flows behind the shock wave in a non-ideal gas using Lie group analysis method with azimuthal or axial magnetic field in rotating medium [J].
Nath, G. ;
Devi, Arti .
EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (05)
[43]   Approximate analytical solution for the propagation of shock wave in a mixture of small solid particles and non-ideal gas: isothermal flow [J].
Nath, Gorakh .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2022, 77 (02) :191-206
[44]   Self-similar adiabatic flow headed by a magnetogasdynamic cylindrical shock wave in a rotating non-ideal gas [J].
Vishwakarma, J. P. ;
Maurya, Anil Kumar ;
Singh, K. K. .
GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 2007, 101 (02) :155-168
[45]   A self-similar solution for a strong shock wave in a mixture of a non-ideal gas and dust particles with radiation heat-flux [J].
Vishwakarma, J. P. ;
Patel, Nanhey .
MECCANICA, 2015, 50 (05) :1239-1247
[46]   Lie symmetry method to discuss the optimal system of Lie subalgebras and similarity solutions for shock propagation in a perfectly conducting dusty gas with magnetic field in rotating medium [J].
Nath, G. ;
Singh, R. K. .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2025, 22 (06)
[47]   Flow Behind an Exponential Shock Wave in a Rotational Axisymmetric Non-ideal Gas with Conduction and Radiation Heat Flux [J].
Nath G. ;
Sahu P.K. .
International Journal of Applied and Computational Mathematics, 2017, 3 (4) :2785-2801
[48]   Self-similar solution of cylindrical shock wave propagation in a rotational axisymmetric mixture of a non-ideal gas and small solid particles [J].
Nath, G. .
MECCANICA, 2012, 47 (07) :1797-1814
[50]   Exact solution of shock wave structure in a non-ideal gas under constant and variable coefficient of viscosity and heat conductivity [J].
Patel, A. ;
Singh, M. .
SHOCK WAVES, 2019, 29 (03) :427-439