Analytical Solutions of the Schrödinger Equation for Two Confined Particles with the van der Waals Interaction

被引:0
|
作者
Du, Ruijie [1 ]
机构
[1] Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China
基金
中央高校基本科研业务费专项资金资助;
关键词
ATOMS;
D O I
10.1007/s00601-024-01970-w
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive exact analytical solutions to the Schr & ouml;dinger equation featuring a dual-scale potential, namely, a blend of a van der Waals (vdW) potential and an isotropic harmonic potential. The asymptotic behaviors of these solutions as r -> 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\rightarrow 0$$\end{document} and r ->infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\rightarrow \infty $$\end{document} are also elucidated. These results are obtained through the approach we recently developed [arXiv: 2207.09377]. Using our results, we further calculate the s-wave and p-wave energy spectrums of two particles confined in an isotropic harmonic trap, with vdW inter-particle interaction. We compare our exact results and the ones given by the zero-range pseudopotential (ZRP) approaches, with either energy-dependent or energy-independent s-wave scattering length as\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_s$$\end{document} or p-wave scattering volume Vp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_p$$\end{document}. It is shown that the results of ZRP approaches with energy-dependent as\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_s$$\end{document} or Vp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_p$$\end{document} consist well with our exact ones, when the length scale beta 6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _6$$\end{document} of the vdW potential equals to or less than the length scale ah\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_h$$\end{document} of the confinement potential. Furthermore, when beta 6 >> ah\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _6\gg a_h$$\end{document} (e.g. , beta 6=10ah\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _6=10a_h$$\end{document}) all the ZRP approaches fail. Our results are helpful for the research of confined ultracold atoms or molecules with strong vdW interactions.
引用
收藏
页数:16
相关论文
共 50 条