Leveraging artificial intelligence and machine learning to accelerate discovery of disease-modifying therapies in type 1 diabetes

被引:1
作者
Shapiro, Melanie R. [1 ,2 ]
Tallon, Erin M. [3 ,4 ,5 ]
Brown, Matthew E. [1 ,2 ]
Posgai, Amanda L. [1 ,2 ]
Clements, Mark A. [3 ,5 ]
Brusko, Todd M. [1 ,2 ,6 ,7 ]
机构
[1] Univ Florida, Coll Med, Dept Pathol Immunol & Lab Med, Gainesville, FL 32610 USA
[2] Univ Florida, Diabet Inst, Gainesville, FL 32610 USA
[3] Childrens Mercy Kansas City, Div Pediat Endocrinol & Diabet, Kansas City, MO USA
[4] Univ Missouri Columbia, Inst Data Sci & Informat, Columbia, MO USA
[5] Univ Missouri, Kansas City Sch Med, Dept Pediat, Kansas City, MO USA
[6] Univ Florida, Coll Med, Dept Pediat, Gainesville, FL 32603 USA
[7] Univ Florida, Coll Med, Dept Biochem & Mol Biol, Gainesville, FL 32603 USA
关键词
Artificial intelligence; Digital twin; Drug discovery; Drug repurposing; Drug response; Immunotherapy; Machine learning; Pharmacogenetics; Precision medicine; Review; Type; 1; diabetes; BETA-CELL FUNCTION; DOUBLE-BLIND; RISK; PRESERVATION; INDIVIDUALS; PROGRESSION; PREDICTION; TEPLIZUMAB; ABATACEPT; RELEVANCE;
D O I
10.1007/s00125-024-06339-6
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Progress in developing therapies for the maintenance of endogenous insulin secretion in, or the prevention of, type 1 diabetes has been hindered by limited animal models, the length and cost of clinical trials, difficulties in identifying individuals who will progress faster to a clinical diagnosis of type 1 diabetes, and heterogeneous clinical responses in intervention trials. Classic placebo-controlled intervention trials often include monotherapies, broad participant populations and extended follow-up periods focused on clinical endpoints. While this approach remains the 'gold standard' of clinical research, efforts are underway to implement new approaches harnessing the power of artificial intelligence and machine learning to accelerate drug discovery and efficacy testing. Here, we review emerging approaches for repurposing agents used to treat diseases that share pathogenic pathways with type 1 diabetes and selecting synergistic combinations of drugs to maximise therapeutic efficacy. We discuss how emerging multi-omics technologies, including analysis of antigen processing and presentation to adaptive immune cells, may lead to the discovery of novel biomarkers and subsequent translation into antigen-specific immunotherapies. We also discuss the potential for using artificial intelligence to create 'digital twin' models that enable rapid in silico testing of personalised agents as well as dose determination. To conclude, we discuss some limitations of artificial intelligence and machine learning, including issues pertaining to model interpretability and bias, as well as the continued need for validation studies via confirmatory intervention trials.
引用
收藏
页码:477 / 494
页数:18
相关论文
共 100 条
[21]   Advancing an agile regulatory ecosystem to respond to the rapid development of innovative technologies [J].
ElZarrad, M. Khair ;
Lee, Aaron Y. ;
Purcell, Rose ;
Steele, Scott J. .
CTS-CLINICAL AND TRANSLATIONAL SCIENCE, 2022, 15 (06) :1332-1339
[22]  
Evans-Molina C, 2023, LANCET DIABETES ENDO, V11, P76, DOI 10.1016/S2213-8587(22)00390-4
[23]   Automated quantitative trait locus analysis (AutoQTL) [J].
Freda, Philip J. ;
Ghosh, Attri ;
Zhang, Elizabeth ;
Luo, Tianhao ;
Chitre, Apurva S. ;
Polesskaya, Oksana ;
St. Pierre, Celine L. ;
Gao, Jianjun ;
Martin, Connor D. ;
Chen, Hao ;
Garcia-Martinez, Angel G. ;
Wang, Tengfei ;
Han, Wenyan ;
Ishiwari, Keita ;
Meyer, Paul ;
Lamparelli, Alexander ;
King, Christopher P. ;
Palmer, Abraham A. ;
Li, Ruowang ;
Moore, Jason H. .
BIODATA MINING, 2023, 16 (01)
[24]   Impact of Immune-Modulatory Drugs on Regulatory T Cell [J].
Furukawa, Akiko ;
Wisel, Steven A. ;
Tang, Qizhi .
TRANSPLANTATION, 2016, 100 (11) :2288-2300
[25]   AI pitfalls and what not to do: mitigating bias in AI [J].
Gichoya, Judy Wawira ;
Thomas, Kaesha ;
Celi, Leo Anthony ;
Safdar, Nabile ;
Banerjee, Imon ;
Banja, John D. ;
Seyyed-Kalantari, Laleh ;
Trivedi, Hari ;
Purkayastha, Saptarshi .
BRITISH JOURNAL OF RADIOLOGY, 2023, 96 (1150)
[26]   The Role of Fc Receptors on the Effectiveness of Therapeutic Monoclonal Antibodies [J].
Gogesch, Patricia ;
Dudek, Simone ;
van Zandbergen, Ger ;
Waibler, Zoe ;
Anzaghe, Martina .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (16)
[27]   Conventional and Neo-antigenic Peptides Presented by β Cells Are Targeted by Circulating Naive CD8+T Cells in Type 1 Diabetic and Healthy Donors [J].
Gonzalez-Duque, Sergio ;
Azoury, Marie Eliane ;
Colli, Maikel L. ;
Afonso, Georgia ;
Turatsinze, Jean-Valery ;
Nigi, Laura ;
Lalanne, Ana Ines ;
Sebastiani, Guido ;
Carre, Alexia ;
Pinto, Sheena ;
Culina, Slobodan ;
Corcos, Noemie ;
Bugliani, Marco ;
Marchetti, Piero ;
Armanet, Mathieu ;
Diedisheim, Marc ;
Kyewski, Bruno ;
Steinmetz, Lars M. ;
Buus, Soren ;
You, Sylvaine ;
Dubois-Laforgue, Daniele ;
Larger, Etienne ;
Beressi, Jean-Paul ;
Bruno, Graziella ;
Dotta, Francesco ;
Scharfmann, Raphael ;
Eizirik, Decio L. ;
Verdier, Yann ;
Vinh, Joelle ;
Mallone, Roberto .
CELL METABOLISM, 2018, 28 (06) :946-+
[28]   Effect of Oral Insulin on Prevention of Diabetes in Relatives of Patients With Type 1 Diabetes A Randomized Clinical Trial [J].
Greenbaum, C. ;
Atkinson, M. ;
Baidal, D. ;
Battaglia, M. ;
Bingley, P. ;
Bosi, E. ;
Buckner, J. ;
Clements, M. ;
Colman, P. ;
DiMeglio, L. ;
Evans-Molina, C. ;
Gitelman, S. ;
Goland, R. ;
Gottlieb, P. ;
Herold, K. ;
Knip, M. ;
Krischer, J. ;
Lernmark, A. ;
Moore, W. ;
Moran, A. ;
Muir, A. ;
Palmer, J. ;
Peakman, M. ;
Philipson, L. ;
Raskin, P. ;
Redondo, M. ;
Rodriguez, H. ;
Russell, W. ;
Spain, L. ;
Schatz, D. A. ;
Sosenko, J. ;
Wherrett, D. ;
Wilson, D. ;
Winter, W. ;
Ziegler, A. ;
Anderson, M. ;
Antinozzi, P. ;
Benoist, C. ;
Blum, J. ;
Bourcier, K. ;
Chase, P. ;
Clare-Salzler, M. ;
Clynes, R. ;
Cowie, C. ;
Eisenbarth, G. ;
Fathman, C. G. ;
Grave, G. ;
Harrison, L. ;
Hering, B. ;
Insel, R. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (19) :1891-1902
[29]   Low-Dose Anti-Thymocyte Globulin Preserves C-Peptide, Reduces HbA1c, and Increases Regulatory to Conventional T-Cell Ratios in New-Onset Type 1 Diabetes: Two-Year Clinical Trial Data [J].
Haller, Michael J. ;
Long, S. Alice ;
Blanchfield, J. Lori ;
Schatz, Desmond A. ;
Skyler, Jay S. ;
Krischer, Jeffrey P. ;
Bundy, Brian N. ;
Geyer, Susan M. ;
Warnock, Megan V. ;
Miller, Jessica L. ;
Atkinson, Mark A. ;
Becker, Dorothy J. ;
Baidal, David A. ;
DiMeglio, Linda A. ;
Gitelman, Stephen E. ;
Goland, Robin ;
Gottlieb, Peter A. ;
Herold, Kevan C. ;
Marks, Jennifer B. ;
Moran, Antoinette ;
Rodriguez, Henry ;
Russell, William E. ;
Wilson, Darrell M. ;
Greenbaum, Carla J. .
DIABETES, 2019, 68 (06) :1267-1276
[30]   Efficacy of GAD-alum immunotherapy associated with HLA-DR3-DQ2 in recently diagnosed type 1 diabetes [J].
Hannelius, Ulf ;
Beam, Craig A. ;
Ludvigsson, Johnny .
DIABETOLOGIA, 2020, 63 (10) :2177-2181