Leveraging artificial intelligence and machine learning to accelerate discovery of disease-modifying therapies in type 1 diabetes

被引:1
作者
Shapiro, Melanie R. [1 ,2 ]
Tallon, Erin M. [3 ,4 ,5 ]
Brown, Matthew E. [1 ,2 ]
Posgai, Amanda L. [1 ,2 ]
Clements, Mark A. [3 ,5 ]
Brusko, Todd M. [1 ,2 ,6 ,7 ]
机构
[1] Univ Florida, Coll Med, Dept Pathol Immunol & Lab Med, Gainesville, FL 32610 USA
[2] Univ Florida, Diabet Inst, Gainesville, FL 32610 USA
[3] Childrens Mercy Kansas City, Div Pediat Endocrinol & Diabet, Kansas City, MO USA
[4] Univ Missouri Columbia, Inst Data Sci & Informat, Columbia, MO USA
[5] Univ Missouri, Kansas City Sch Med, Dept Pediat, Kansas City, MO USA
[6] Univ Florida, Coll Med, Dept Pediat, Gainesville, FL 32603 USA
[7] Univ Florida, Coll Med, Dept Biochem & Mol Biol, Gainesville, FL 32603 USA
关键词
Artificial intelligence; Digital twin; Drug discovery; Drug repurposing; Drug response; Immunotherapy; Machine learning; Pharmacogenetics; Precision medicine; Review; Type; 1; diabetes; BETA-CELL FUNCTION; DOUBLE-BLIND; RISK; PRESERVATION; INDIVIDUALS; PROGRESSION; PREDICTION; TEPLIZUMAB; ABATACEPT; RELEVANCE;
D O I
10.1007/s00125-024-06339-6
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Progress in developing therapies for the maintenance of endogenous insulin secretion in, or the prevention of, type 1 diabetes has been hindered by limited animal models, the length and cost of clinical trials, difficulties in identifying individuals who will progress faster to a clinical diagnosis of type 1 diabetes, and heterogeneous clinical responses in intervention trials. Classic placebo-controlled intervention trials often include monotherapies, broad participant populations and extended follow-up periods focused on clinical endpoints. While this approach remains the 'gold standard' of clinical research, efforts are underway to implement new approaches harnessing the power of artificial intelligence and machine learning to accelerate drug discovery and efficacy testing. Here, we review emerging approaches for repurposing agents used to treat diseases that share pathogenic pathways with type 1 diabetes and selecting synergistic combinations of drugs to maximise therapeutic efficacy. We discuss how emerging multi-omics technologies, including analysis of antigen processing and presentation to adaptive immune cells, may lead to the discovery of novel biomarkers and subsequent translation into antigen-specific immunotherapies. We also discuss the potential for using artificial intelligence to create 'digital twin' models that enable rapid in silico testing of personalised agents as well as dose determination. To conclude, we discuss some limitations of artificial intelligence and machine learning, including issues pertaining to model interpretability and bias, as well as the continued need for validation studies via confirmatory intervention trials.
引用
收藏
页码:477 / 494
页数:18
相关论文
共 100 条
[1]  
Abbey O, 2023, ARTIFICIAL INTELLIGE
[2]   Harnessing machine learning to find synergistic combinations for FDA-approved cancer drugs [J].
Abd El-Hafeez, Tarek ;
Shams, Mahmoud Y. ;
Elshaier, Yaseen A. M. M. ;
Farghaly, Heba Mamdouh ;
Hassanien, Aboul Ella .
SCIENTIFIC REPORTS, 2024, 14 (01)
[3]   Machine learning approaches to drug response prediction: challenges and recent progress [J].
Adam, George ;
Rampasek, Ladislav ;
Safikhani, Zhaleh ;
Smirnov, Petr ;
Haibe-Kains, Benjamin ;
Goldenberg, Anna .
NPJ PRECISION ONCOLOGY, 2020, 4 (01)
[4]   Pharmacogenomics of Drug Metabolizing Enzymes and Transporters: Relevance to Precision Medicine [J].
Ahmed, Shabbir ;
Zhou, Zhan ;
Zhou, Jie ;
Chen, Shu-Qing .
GENOMICS PROTEOMICS & BIOINFORMATICS, 2016, 14 (05) :298-313
[5]   A clinician's guide to understanding and critically appraising machine learning studies: a checklist for Ruling Out Bias Using Standard Tools in Machine Learning (ROBUST-ML) [J].
Al-Zaiti, Salah S. ;
Alghwiri, Alaa A. ;
Hu, Xiao ;
Clermont, Gilles ;
Peace, Aaron ;
Macfarlane, Peter ;
Bond, Raymond .
EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2022, 3 (02) :125-140
[6]   Metabolic and immune effects of immunotherapy with proinsulin peptide in human new-onset type 1 diabetes [J].
Ali, Mohammad Alhadj ;
Liu, Yuk-Fun ;
Arif, Sefina ;
Tatovic, Danijela ;
Shariff, Hina ;
Gibson, Vivienne B. ;
Yusuf, Norkhairin ;
Baptista, Roman ;
Eichmann, Martin ;
Petrov, Nedyalko ;
Heck, Susanne ;
Yang, Jennie H. M. ;
Tree, Timothy I. M. ;
Pujol-Autonell, Irma ;
Yeo, Lorraine ;
Baumard, Lucas R. ;
Stenson, Rachel ;
Howell, Alex ;
Clark, Alison ;
Boult, Zoe ;
Powrie, Jake ;
Adams, Laura ;
Wong, Florence S. ;
Luzio, Stephen ;
Dunseath, Gareth ;
Green, Kate ;
O'Keefe, Alison ;
Bayly, Graham ;
Thorogood, Natasha ;
Andrews, Robert ;
Leech, Nicola ;
Joseph, Frank ;
Nair, Sunil ;
Seal, Susan ;
Cheung, Hoyee ;
Beam, Craig ;
Hills, Robert ;
Peakman, Mark ;
Dayan, Colin M. .
SCIENCE TRANSLATIONAL MEDICINE, 2017, 9 (402)
[7]   Deucravacitinib versus placebo and apremilast in moderate to severe plaque psoriasis: Efficacy and safety results from the 52-week, randomized, double-blinded, placebo-controlled phase 3 POETYK PSO-1 trial [J].
Armstrong, April W. ;
Gooderham, Melinda ;
Warren, Richard B. ;
Papp, Kim A. ;
Strober, Bruce ;
Thaci, Diamant ;
Morita, Akimichi ;
Szepietowski, Jacek C. ;
Imafuku, Shinichi ;
Colston, Elizabeth ;
Throup, John ;
Kundu, Sudeep ;
Schoenfeld, Steve ;
Linaberry, Misti ;
Banerjee, Subhashis ;
Blauvelt, Andrew .
JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2023, 88 (01) :29-39
[8]   Introducing the Endotype Concept to Address the Challenge of Disease Heterogeneity in Type 1 Diabetes [J].
Battaglia, Manuela ;
Ahmed, Simi ;
Anderson, Mark S. ;
Atkinson, Mark A. ;
Becker, Dorothy ;
Bingley, Polly J. ;
Bosi, Emanuele ;
Brusko, Todd M. ;
DiMeglio, Linda A. ;
Evans-Molina, Carmella ;
Gitelman, Stephen E. ;
Greenbaum, Carla J. ;
Gottlieb, Peter A. ;
Herold, Kevan C. ;
Hessner, Martin J. ;
Knip, Mikael ;
Jacobsen, Laura ;
Krischer, Jeffrey P. ;
Long, S. Alice ;
Lundgren, Markus ;
McKinney, Eoin F. ;
Morgan, Noel G. ;
Oram, Richard A. ;
Pastinen, Tomi ;
Peters, Michael C. ;
Petrelli, Alessandra ;
Qian, Xiaoning ;
Redondo, Maria J. ;
Roep, Bart O. ;
Schatz, Desmond ;
Skibinski, David ;
Peakman, Mark .
DIABETES CARE, 2020, 43 (01) :5-12
[9]   Type 1 Diabetes TrialNet: A Multifaceted Approach to Bringing Disease-Modifying Therapy to Clinical Use in Type 1 Diabetes [J].
Bingley, Polly J. ;
Wherrett, Diane K. ;
Shultz, Ann ;
Rafkin, Lisa E. ;
Atkinson, Mark A. ;
Greenbaum, Carla J. .
DIABETES CARE, 2018, 41 (04) :653-661
[10]   TIMELINE The Immune Tolerance Network at 10 years: tolerance research at the bedside [J].
Bluestone, Jeffrey A. ;
Auchincloss, Hugh ;
Nepom, Gerald T. ;
Rotrosen, Daniel ;
Clair, E. William St. ;
Turka, Laurence A. .
NATURE REVIEWS IMMUNOLOGY, 2010, 10 (11) :797-803