Dendritic phytic acid as a proton-conducting crosslinker for improved thermal stability and proton conductivity

被引:0
|
作者
Maegawa, Keiichiro [1 ]
Joseph, Vellaichamy [1 ]
Devendran, Arthisree [1 ]
Alipour, Hassan [1 ]
Lyczko, Krzysztof [2 ]
Korol, Yaroslav [3 ]
Lewandowska-Siwkiewicz, Hanna [3 ,4 ]
Nagai, Atsushi [1 ]
机构
[1] Ctr Excellence ENSEMBLE3, Next Generat Energy Syst Grp, Warsaw, Poland
[2] Inst Nucl Chem & Technol, Warsaw, Poland
[3] Ctr Excellence ENSEMBLE3, Warsaw, Poland
[4] Univ Econ & Human Sci, Sch Hlth & Med Sci, Warsaw, Poland
基金
欧盟地平线“2020”; 日本学术振兴会;
关键词
SALT-COCRYSTAL CONTINUUM; FUEL-CELL APPLICATIONS;
D O I
10.1038/s43246-025-00748-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
There is growing interest in materials that exhibit enhanced proton conductivity at elevated temperatures without the need for humidification. Here, we develop a dendritic proton-conducting dopant for proton exchange membranes based on phytic acid (PhA) salts. PhA, which contains six phosphate groups capable of facilitating proton exchange, interacts with 4-dimethylaminopyridine (DMAP). DMAP serves as a strong electron donor, making it highly reactive with PhA. In this endeavor, cellulose sulfonic acid was selected as the base proton exchange membrane. Notably, the dimethylamino group of DMAP on the surface of DMAP-PhA acts as a basic site, enabling acid-base interactions with the sulfonic acid groups of cellulose sulfonic acid. As a result, DMAP-PhA functions as a proton-conducting crosslinker, significantly improving the thermal stability of the composites and increasing proton conductivity by enhancing the degree of proton dissociation at each interaction site.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] FUNCTIONING OF PROTON-CONDUCTING CHANNELS IN BIOMEMBRANES
    TOMCHUK, PM
    PROTSENKO, NA
    KRASNOGOLOVETS, VV
    BIOLOGICHESKIE MEMBRANY, 1984, 1 (11): : 1171 - 1178
  • [42] New frontiers of proton-conducting oxides
    Medvedev, Dmitry
    Shao, Zongping
    CERAMICS INTERNATIONAL, 2024, 50 (20) : 40191 - 40191
  • [43] NEW PROTON-CONDUCTING INORGANIC SOLIDS
    CHOWDHRY, U
    BARKLEY, JR
    SLEIGHT, AW
    AMERICAN CERAMIC SOCIETY BULLETIN, 1980, 59 (03): : 350 - 350
  • [44] Fine morphology of proton-conducting ionomers
    Ioselevich, AS
    Kornyshev, AA
    Steinke, JHG
    JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (32): : 11953 - 11963
  • [45] Database of Nonaqueous Proton-Conducting Materials
    Cassady, Harrison J.
    Martin, Emeline
    Liu, Yifan
    Bhattacharya, Debjyoti
    Rochow, Maria F.
    Dyer, Brock A.
    Reinhart, Wesley F.
    Cooper, Valentino R.
    Hickner, Michael A.
    ACS APPLIED MATERIALS & INTERFACES, 2025, 17 (11) : 16901 - 16908
  • [46] Proton-Conducting Magnetic Coordination Polymers
    Biswas, Soumava
    Jena, Himanshu Sekhar
    Sanda, Suresh
    Konar, Sanjit
    CHEMISTRY-A EUROPEAN JOURNAL, 2015, 21 (39) : 13793 - 13801
  • [47] Proton-conducting crystalline porous materials
    Meng, Xing
    Wang, Hai-Ning
    Song, Shu-Yan
    Zhang, Hong-Jie
    CHEMICAL SOCIETY REVIEWS, 2017, 46 (02) : 464 - 480
  • [48] Composite proton-conducting membranes for PEMFCs
    Mustarelli, P.
    Carollo, A.
    Grandi, S.
    Quartarone, E.
    Tomasi, C.
    Leonardi, S.
    Magistris, A.
    FUEL CELLS, 2007, 7 (06) : 441 - 446
  • [49] Proton-conducting amino acid-modified chitosan nanofibers for nanocomposite proton exchange membranes
    Wang, Shubo
    Shi, Lei
    Zhang, Shuo
    Wang, Hang
    Cheng, Bowen
    Zhuang, Xupin
    Li, Zhenhuan
    EUROPEAN POLYMER JOURNAL, 2019, 119 : 327 - 334
  • [50] Proton-Conducting Network in Lanthanum Orthophosphate
    Toyoura, Kazuaki
    Hatada, Naoyuki
    Nose, Yoshitaro
    Tanaka, Isao
    Matsunaga, Katsuyuki
    Uda, Tetsuya
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (36): : 19117 - 19124