Dendritic phytic acid as a proton-conducting crosslinker for improved thermal stability and proton conductivity

被引:0
|
作者
Maegawa, Keiichiro [1 ]
Joseph, Vellaichamy [1 ]
Devendran, Arthisree [1 ]
Alipour, Hassan [1 ]
Lyczko, Krzysztof [2 ]
Korol, Yaroslav [3 ]
Lewandowska-Siwkiewicz, Hanna [3 ,4 ]
Nagai, Atsushi [1 ]
机构
[1] Ctr Excellence ENSEMBLE3, Next Generat Energy Syst Grp, Warsaw, Poland
[2] Inst Nucl Chem & Technol, Warsaw, Poland
[3] Ctr Excellence ENSEMBLE3, Warsaw, Poland
[4] Univ Econ & Human Sci, Sch Hlth & Med Sci, Warsaw, Poland
基金
欧盟地平线“2020”; 日本学术振兴会;
关键词
SALT-COCRYSTAL CONTINUUM; FUEL-CELL APPLICATIONS;
D O I
10.1038/s43246-025-00748-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
There is growing interest in materials that exhibit enhanced proton conductivity at elevated temperatures without the need for humidification. Here, we develop a dendritic proton-conducting dopant for proton exchange membranes based on phytic acid (PhA) salts. PhA, which contains six phosphate groups capable of facilitating proton exchange, interacts with 4-dimethylaminopyridine (DMAP). DMAP serves as a strong electron donor, making it highly reactive with PhA. In this endeavor, cellulose sulfonic acid was selected as the base proton exchange membrane. Notably, the dimethylamino group of DMAP on the surface of DMAP-PhA acts as a basic site, enabling acid-base interactions with the sulfonic acid groups of cellulose sulfonic acid. As a result, DMAP-PhA functions as a proton-conducting crosslinker, significantly improving the thermal stability of the composites and increasing proton conductivity by enhancing the degree of proton dissociation at each interaction site.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Modeling of electrical conductivity in high-temperature proton-conducting oxides
    Baek, HD
    SOLID STATE IONICS, 1998, 110 (3-4) : 255 - 262
  • [32] Thermal properties of proton-conducting radiation-grafted membranes
    Guersel, Selmiye Alkan
    Schneider, Julian
    Ben Youcef, Hicharn
    Wokaun, Alexander
    Scherer, Guenther G.
    JOURNAL OF APPLIED POLYMER SCIENCE, 2008, 108 (06) : 3577 - 3585
  • [33] Antimonic acid and sulfonated polystyrene proton-conducting polymeric composites
    Amarilla, JM
    Rojas, RM
    Rojo, JM
    Cubillo, MJ
    Linares, A
    Acosta, JL
    SOLID STATE IONICS, 2000, 127 (1-2) : 133 - 139
  • [34] Silicotungstic acid/organically modified silane proton-conducting membranes
    U. Lavrenčič Štangar
    B. Orel
    J. Vince
    V. Jovanovski
    H. Spreizer
    A. Šurca Vuk
    S. Hočevar
    Journal of Solid State Electrochemistry, 2005, 9 : 106 - 113
  • [35] Role of an acceptor impurity in the proton transfer in proton-conducting oxides
    M. Z. Uritsky
    V. I. Tsidilkovski
    Physics of the Solid State, 2014, 56 : 2173 - 2180
  • [36] Improved Thermal Stability of Efficient Proton-Conducting Anodic ZrO2-WO3 Nanofilms by Incorporation of Silicon Species
    Ye, Ke
    Aoki, Yoshitaka
    Tsuji, Etsushi
    Nagata, Shinji
    Habazaki, Hiroki
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (11) : C385 - C390
  • [37] Proton-Conducting Polymers and Membranes Carrying Phosphonic Acid Groups
    Rusanov, Alexandre L.
    Kostoglodov, Petr V.
    Abadie, Marc J. M.
    Voytekunas, Vanda Yu.
    Likhachev, Dmitri Yu.
    FUEL CELLS II, 2008, 216 : 125 - 155
  • [38] Silicotungstic acid/organically modified silane proton-conducting membranes
    Stangar, UL
    Orel, B
    Vince, J
    Jovanovski, V
    Spreizer, H
    Vuk, AS
    Hocevar, S
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2005, 9 (02) : 106 - 113
  • [39] Role of an acceptor impurity in the proton transfer in proton-conducting oxides
    Uritsky, M. Z.
    Tsidilkovski, V. I.
    PHYSICS OF THE SOLID STATE, 2014, 56 (11) : 2173 - 2180
  • [40] Composite proton-conducting membranes with nanodiamonds
    Kulvelis, Yu. V.
    Primachenko, O. N.
    Odinokov, A. S.
    Shvidchenko, A. V.
    Bayramukov, V. Yu.
    Gofman, I. V.
    Lebedev, V. T.
    Ivanchev, S. S.
    Vul, A. Ya.
    Kuklin, A. I.
    Wu, B.
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2020, 28 (02) : 140 - 146