Some sharp inequalities for norms in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^n$$\end{document} and Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^n$$\end{document}

被引:0
作者
Stefan Gerdjikov [1 ]
Nikolai Nikolov [2 ]
机构
[1] Sofia University,Faculty of Mathematics and Informatics
[2] Bulgarian Academy of Sciences,Institute for Information and Communication Technologies
[3] Bulgarian Academy of Sciences,Institute of Mathematics and Informatics
[4] State University of Library Studies and Information Technologies,Faculty of Information Sciences
关键词
Norm; Convex domain; Maximal/minimal basis; 52A40; 52A21; 32F17;
D O I
10.1007/s00605-024-02004-7
中图分类号
学科分类号
摘要
The main result of this paper is that for any norm on a complex or real n-dimensional linear space, every extremal basis satisfies inverted triangle inequality with scaling factor 2n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^n-1$$\end{document}. Furthermore, the constant 2n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^n-1$$\end{document} is tight. We also prove that the norms of any two extremal bases are comparable with a factor of 2n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^n-1$$\end{document}, which, intuitively, means that any two extremal bases are quantitatively equivalent with the stated tolerance.
引用
收藏
页码:477 / 496
页数:19
相关论文
共 16 条
[1]  
Asplund E(1960)Comparison between plane symmetric convex bodies and parallelograms Marh. Scand. 8 171-180
[2]  
Charpentier P(2014)Extremal bases, geometrically separated domains and applications Algebra and Analysis 26 196-269
[3]  
Dupain Y(2002)Hölder and Mathematische Zeitschrift 242 367-398
[4]  
Hefer T(2004) estimates for Michigan Math. J. 52 573-602
[5]  
Hefer T(2002) on convex domains of finite type depending on Catlin’s multiptype Proc. Am. Math. Soc. 130 3075-3084
[6]  
Lassak M(1992)Extremal bases and Hölder estimates for J. Funct. Anal. 108 361-373
[7]  
McNeal JD(1994) on convex domains of finite type Adv. Math. 109 108-139
[8]  
McNeal JD(2003)Approximation of convex bodies by axially symmetric bodies Ann. Polonici Math. 81 73-78
[9]  
Nikolov N(2013)Convex domains of finite types Proc. Am. Math. Soc. 141 3223-3230
[10]  
Pflug P(2011)Estimates on the bergman kernels of convex domains Trans. Am. Math. Soc. 363 6245-6256