Learning the Optimal Discriminant SVM With Feature Extraction

被引:1
作者
Zhang, Junhong [1 ]
Lai, Zhihui [1 ]
Kong, Heng [2 ]
Yang, Jian [3 ]
机构
[1] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
[2] BaoAn Cent Hosp Shenzhen, Dept Breast & Thyroid Surg, Shenzhen 518100, Peoples R China
[3] Nanjing Univ Sci & Technol, Key Lab Intelligent Percept & Syst High Dimens Inf, Minist Educ, Nanjing 210094, Peoples R China
基金
中国国家自然科学基金;
关键词
Support vector machines; Feature extraction; Optimization; Classification algorithms; Convergence; Vectors; Principal component analysis; Minimization; Representation learning; Training; Support vector machine; subspace learning; joint learning framework; SUPPORT VECTOR MACHINE; DIMENSIONALITY REDUCTION; RECOGNITION; EFFICIENT;
D O I
10.1109/TPAMI.2025.3529711
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Subspace learning and Support Vector Machine (SVM) are two critical techniques in pattern recognition, playing pivotal roles in feature extraction and classification. However, how to learn the optimal subspace such that the SVM classifier can perform the best is still a challenging problem due to the difficulty in optimization, computation, and algorithm convergence. To address these problems, this paper develops a novel method named Optimal Discriminant Support Vector Machine (ODSVM), which integrates support vector classification with discriminative subspace learning in a seamless framework. As a result, the most discriminative subspace and the corresponding optimal SVM are obtained simultaneously to pursue the best classification performance. The efficient optimization framework is designed for binary and multi-class ODSVM. Moreover, a fast sequential minimization optimization (SMO) algorithm with pruning is proposed to accelerate the computation in multi-class ODSVM. Unlike other related methods, ODSVM has a strong theoretical guarantee of global convergence, highlighting its superiority and stability. Numerical experiments are conducted on thirteen datasets and the results demonstrate that ODSVM outperforms existing methods with statistical significance.
引用
收藏
页码:2897 / 2911
页数:15
相关论文
共 50 条
[1]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[2]   The 2-Coordinate Descent Method for Solving Double-Sided Simplex Constrained Minimization Problems [J].
Beck, Amir .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2014, 162 (03) :892-919
[3]   Laplacian eigenmaps for dimensionality reduction and data representation [J].
Belkin, M ;
Niyogi, P .
NEURAL COMPUTATION, 2003, 15 (06) :1373-1396
[4]  
Blanco V, 2020, J MACH LEARN RES, V21
[5]  
Boyd Stephen., 2004, Convex Optimization, V1st, P727
[6]   A study on SMO-type decomposition methods for support vector machines [J].
Chen, Pai-Hsuen ;
Fan, Rong-En ;
Lin, Chih-Jen .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2006, 17 (04) :893-908
[7]   SUPPORT-VECTOR NETWORKS [J].
CORTES, C ;
VAPNIK, V .
MACHINE LEARNING, 1995, 20 (03) :273-297
[8]   NEAREST NEIGHBOR PATTERN CLASSIFICATION [J].
COVER, TM ;
HART, PE .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1967, 13 (01) :21-+
[9]   On the algorithmic implementation of multiclass kernel-based vector machines [J].
Crammer, K ;
Singer, Y .
JOURNAL OF MACHINE LEARNING RESEARCH, 2002, 2 (02) :265-292
[10]  
Fan RE, 2008, J MACH LEARN RES, V9, P1871