Fibering polarizations and Mabuchi rays on symmetric spaces of compact type

被引:0
作者
Baier, Thomas [1 ]
Ferreira, Ana Cristina [2 ]
Hilgert, Joachim [3 ]
Mourao, Jose M. [1 ,4 ]
Nunes, Joao P. [1 ,4 ]
机构
[1] Inst Super Tecn, Ctr Math Anal Geometry & Dynam Syst, Lisbon, Portugal
[2] Univ Minho, Ctr Matemat, Braga, Portugal
[3] Paderborn Univ, Dept Math, Paderborn, Germany
[4] Inst Super Tecn, Dept Math, Lisbon, Portugal
关键词
SEGAL-BARGMANN TRANSFORM; GEOMETRIC-QUANTIZATION; CONVERGENCE; CONVEXITY; KAHLER;
D O I
10.1007/s13324-025-01012-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we describe holomorphic quantizations of the cotangent bundle of a symmetric space of compact type T & lowast;(U/K)congruent to UC/KC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T<^>*(U/K)\cong U_\mathbb {C}/K_\mathbb {C}$$\end{document}, along Mabuchi rays of U-invariant K & auml;hler structures. At infinite geodesic time, the K & auml;hler polarizations converge to a mixed polarization P infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P}_\infty $$\end{document}. We show how a generalized coherent state transform (gCST) relates the quantizations along the Mabuchi geodesics such that holomorphic sections converge, as geodesic time goes to infinity, to distributional P infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P}_\infty $$\end{document}-polarized sections. Unlike in the case of T & lowast;(U)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T<^>*(U)$$\end{document}, the gCST mapping from the Hilbert space of vertically polarized sections are not asymptotically unitary due to the appearance of representation dependent factors associated to the isotypical decomposition for the U-action . In agreement with the general program outlined by Baier, Hilgert, Kaya, Mour & atilde;o and Nunes in Journal of Geometry and Physics, 2025, we also describe how the quantization in the limit polarization P infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P}_\infty $$\end{document} is given by the direct sum of the quantizations for all the symplectic reductions relative to the invariant torus action associated to the Hamiltonian action of U.
引用
收藏
页数:37
相关论文
共 37 条
[1]  
Akhiezer D.N., 1986, Complex Variables IV, Encyclopedia of Mathematical Sciences
[2]  
ARAKI S, 1962, J MATH OSAKA CITY U, V13, P1
[3]  
AXELROD S, 1991, J DIFFER GEOM, V33, P787, DOI 10.4310/jdg/1214446565
[4]   Quantization in fibering polarizations, Mabuchi rays and geometric Peter-Weyl theorem [J].
Baier, Thomas ;
Hilgert, Joachim ;
Kaya, Oguzhan ;
Mourao, Jose M. ;
Nunes, Joao P. .
JOURNAL OF GEOMETRY AND PHYSICS, 2025, 207
[5]  
Baier T, 2011, J DIFFER GEOM, V89, P411
[6]  
Biquard O., 1995, Lecture Notes in Pure and Appl. Math. Dekker, V184, P287
[7]  
Borwein J. M., 2010, Convex functions: constructions, characterizations and counterexamples
[8]   Geometric quantization, complex structures and the coherent state transform [J].
Florentino, C ;
Matias, P ;
Mourao, J ;
Nunes, JP .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 221 (02) :303-322
[9]   GEOMETRIC-QUANTIZATION AND MULTIPLICITIES OF GROUP-REPRESENTATIONS [J].
GUILLEMIN, V ;
STERNBERG, S .
INVENTIONES MATHEMATICAE, 1982, 67 (03) :515-538
[10]   Geometric quantization and the generalized Segal-Bargmann transform for lie groups of compact type [J].
Hall, BC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 226 (02) :233-268