First Passage Percolation, Local Uniqueness for Interlacements and Capacity of Random Walk

被引:0
|
作者
Prevost, Alexis [1 ]
机构
[1] Univ Geneva, Sect Math, 24 Rue Gen Dufour, CH-1211 Geneva, Switzerland
关键词
DISCRETE CYLINDERS; VACANT SET; RANGE; TIME; DISCONNECTION; INEQUALITIES; CLUSTERS;
D O I
10.1007/s00220-024-05195-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The study of first passage percolation (FPP) for the random interlacements model has been initiated in Andres and Pr & eacute;vost (Ann Appl Probab 34(2):1846-1895), where it is shown that on Zd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}<^>d$$\end{document}, d >= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 3$$\end{document}, the FPP distance is comparable to the graph distance with high probability. In this article, we give an asymptotically sharp lower bound on this last probability, which additionally holds on a large class of transient graphs with polynomial volume growth and polynomial decay of the Green function. When considering the interlacement set in the low-intensity regime, the previous bound is in fact valid throughout the near-critical phase. In low dimension, we also present two applications of this FPP result: sharp large deviation bounds on local uniqueness of random interlacements, and on the capacity of a random walk in a ball.
引用
收藏
页数:75
相关论文
共 50 条
  • [11] Random walk in a random environment and first-passage percolation on trees (vol 20, pg 125, 1992)
    Lyons, R
    Permantle, R
    ANNALS OF PROBABILITY, 2003, 31 (01): : 528 - 529
  • [12] On the domination of random walk on a discrete cylinder by random interlacements
    Sznitman, Alain-Sol
    ELECTRONIC JOURNAL OF PROBABILITY, 2009, 14 : 1670 - 1704
  • [13] FIRST PASSAGE PERCOLATION ON INHOMOGENEOUS RANDOM GRAPHS
    Kolossvary, Istvan
    Komjathy, Julia
    ADVANCES IN APPLIED PROBABILITY, 2015, 47 (02) : 589 - 610
  • [14] First-passage percolation on the random graph
    van der Hofstad, R
    Hooghiemstra, G
    Van Mieghem, P
    PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2001, 15 (02) : 225 - 237
  • [15] RANDOM-WALK IN A RANDOM ENVIRONMENT AND 1ST-PASSAGE PERCOLATION ON TREES
    LYONS, R
    PEMANTLE, R
    ANNALS OF PROBABILITY, 1992, 20 (01): : 125 - 136
  • [16] First-passage percolation on random simple triangulations
    Stufler, Benedikt
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2024, 21 : 129 - 178
  • [17] UNIVERSALITY FOR FIRST PASSAGE PERCOLATION ON SPARSE RANDOM GRAPHS
    Bhamidi, Shankar
    van der Hofstad, Remco
    Hooghiemstra, Gerard
    ANNALS OF PROBABILITY, 2017, 45 (04): : 2568 - 2630
  • [18] Competing First Passage Percolation on Random Regular Graphs
    Antunovic, Tonci
    Dekel, Yael
    Mossel, Elchanan
    Peres, Yuval
    RANDOM STRUCTURES & ALGORITHMS, 2017, 50 (04) : 534 - 583
  • [19] Asymptotics of first passage times for random walk in an orthant
    McDonald, DR
    ANNALS OF APPLIED PROBABILITY, 1999, 9 (01): : 110 - 145
  • [20] On the first passage time of a simple random walk on a tree
    Bapat, R. B.
    STATISTICS & PROBABILITY LETTERS, 2011, 81 (10) : 1552 - 1558