First Passage Percolation, Local Uniqueness for Interlacements and Capacity of Random Walk

被引:0
|
作者
Prevost, Alexis [1 ]
机构
[1] Univ Geneva, Sect Math, 24 Rue Gen Dufour, CH-1211 Geneva, Switzerland
关键词
DISCRETE CYLINDERS; VACANT SET; RANGE; TIME; DISCONNECTION; INEQUALITIES; CLUSTERS;
D O I
10.1007/s00220-024-05195-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The study of first passage percolation (FPP) for the random interlacements model has been initiated in Andres and Pr & eacute;vost (Ann Appl Probab 34(2):1846-1895), where it is shown that on Zd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}<^>d$$\end{document}, d >= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 3$$\end{document}, the FPP distance is comparable to the graph distance with high probability. In this article, we give an asymptotically sharp lower bound on this last probability, which additionally holds on a large class of transient graphs with polynomial volume growth and polynomial decay of the Green function. When considering the interlacement set in the low-intensity regime, the previous bound is in fact valid throughout the near-critical phase. In low dimension, we also present two applications of this FPP result: sharp large deviation bounds on local uniqueness of random interlacements, and on the capacity of a random walk in a ball.
引用
收藏
页数:75
相关论文
共 50 条
  • [1] Continuity and uniqueness of percolation critical parameters in finitary random interlacements
    Cai, Zhenhao
    Procaccia, Eviatar B.
    Zhang, Yuan
    ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27
  • [2] First passage percolation on the exponential of two-dimensional branching random walk
    Ding, Jian
    Goswami, Subhajit
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2017, 22
  • [3] Percolation for the Finitary Random interlacements
    Procaccia, Eviatar B.
    Ye, Jiayan
    Zhang, Yuan
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2021, 18 (01): : 265 - 287
  • [4] Vacant set of random interlacements and percolation
    Sznitman, Alain-Sol
    ANNALS OF MATHEMATICS, 2010, 171 (03) : 2039 - 2087
  • [5] FIRST-PASSAGE PERCOLATION AND LOCAL MODIFICATIONS OF DISTANCES IN RANDOM TRIANGULATIONS
    Curien, Nicolas
    Le Gall, Jean-Francois
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2019, 52 (03): : 631 - 701
  • [6] Percolation for the Vacant Set of Random Interlacements
    Sidoravicius, Vladas
    Sznitman, Alain-Sol
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2009, 62 (06) : 831 - 858
  • [7] Random walk on a discrete torus and random interlacements
    Windisch, David
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2008, 13 : 140 - 150
  • [8] On Chemical Distance and Local Uniqueness of a Sufficiently Supercritical Finitary Random Interlacements
    Zhenhao Cai
    Xiao Han
    Jiayan Ye
    Yuan Zhang
    Journal of Theoretical Probability, 2023, 36 : 522 - 592
  • [9] ON THE RANGE OF A RANDOM WALK IN A TORUS AND RANDOM INTERLACEMENTS
    Procaccia, Eviatar B.
    Shellef, Eric
    ANNALS OF PROBABILITY, 2014, 42 (04): : 1590 - 1634
  • [10] On Chemical Distance and Local Uniqueness of a Sufficiently Supercritical Finitary Random Interlacements
    Cai, Zhenhao
    Han, Xiao
    Ye, Jiayan
    Zhang, Yuan
    JOURNAL OF THEORETICAL PROBABILITY, 2023, 36 (01) : 522 - 592