Some Novel Conditions for the Oscillation of Second-Order Noncanonical Dynamic Equations with Non-linear Neutral Terms

被引:0
作者
Grace, Said R. [1 ]
Chhatria, Gokula N. [2 ]
机构
[1] Cairo Univ, Fac Engn, Dept Engn Math, Giza 12221, Egypt
[2] Vignans Fdn Sci Technol & Res, Dept Math & Stat, Hyderabad Campus, Deshmukhi 508284, India
关键词
Oscillation; nonoscillation; dynamic equation; comparison method; linearization; CRITERIA;
D O I
10.1007/s00009-024-02795-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to study the oscillatory behavior of solutions of second-order noncanonical dynamical equations with a sublinear and superlinear neutral terms. Using the process of linearization, we obtain some new easily verifiable criteria for the oscillation of the aforementioned equation. The results are illustrated by three examples. The results are new even for the case T=R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {T}}={\mathbb {R}}$$\end{document} and T=Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {T}}={\mathbb {Z}}$$\end{document}.
引用
收藏
页数:15
相关论文
共 29 条
[1]   Oscillation of second-order non-canonical non-linear dynamic equations with a sub-linear neutral term [J].
Abbas, Syed ;
Grace, Said R. ;
Graef, John R. ;
Negi, Shekhar Singh .
DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2024, 32 (03) :819-829
[2]   Some remarks on oscillation of second order neutral differential equations [J].
Agarwal, Ravi P. ;
Zhang, Chenghui ;
Li, Tongxing .
APPLIED MATHEMATICS AND COMPUTATION, 2016, 274 :178-181
[3]   Oscillatory behavior of second-order half-linear damped dynamic equations [J].
Agarwal, Ravi P. ;
Bohner, Martin ;
Li, Tongxing .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 254 :408-418
[4]   Comparison Theorems for Oscillation of Second-Order Neutral Dynamic Equations [J].
Agarwal, Ravi P. ;
Bohner, Martin ;
Li, Tongxing ;
Zhang, Chenghui .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2014, 11 (04) :1115-1127
[5]  
Agarwal RP., 2002, OSCILLATION THEORY 2, DOI [10.1007/978-94-017-2515-6, DOI 10.1007/978-94-017-2515-6]
[6]  
Agarwal RP., 2009, Funct. Differ. Equ, V16, P11
[7]  
BOHNER M., 2001, Dynamic Equations on Time Scales: An Introduction with Applications
[8]   OSCILLATION OF SECOND-ORDER HALF-LINEAR NEUTRAL NONCANONICAL DYNAMIC EQUATIONS [J].
Bohner, Martin ;
El-Morshedy, Hassan ;
Grace, Said ;
Jadlovska, Irena .
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (05) :2646-2658
[9]   Oscillation criteria for second-order neutral delay differential equations [J].
Bohner, Martin ;
Grace, Said R. ;
Jadlovska, Irena .
ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2017, (60) :1-12