Generation of Quasi-Electrostatic Slow Extraordinary Waves by Kappa Distribution with a Loss Cone

被引:0
作者
Shklyar, D. R. [1 ]
Artekha, N. S. [1 ,2 ]
机构
[1] Russian Acad Sci, Space Res Inst, Moscow 117997, Russia
[2] HSE Univ, Moscow 101000, Russia
关键词
slow extraordinary waves; kappa distribution; loss cone; double plasma resonance; wave growth rate; SOLAR RADIO-EMISSION; FINE-STRUCTURE; PLASMA-WAVES; MODE WAVES; INSTABILITY; ORIGIN; CORONA;
D O I
10.1134/S1063780X24601408
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
AbstractA detailed study of the generation of slow extraordinary (SE) waves in the Earth's magnetosphere has been carried out. Assuming that energetic electrons are distributed in accordance with the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document}-function with a loss cone, the instability growth rate of SE waves is calculated and its dependence on both the parameters of the hot particle distribution function and the cold particle density, characterized by the ratio of the electron plasma frequency to the electron cyclotron frequency, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\omega }_{p}}{\text{/}}{{\omega }_{c}}$$\end{document}, is studied. This ratio is one of the key parameters of the problem. For various \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\omega }_{p}}{\text{/}}{{\omega }_{c}}$$\end{document} values, the dependences of the instability growth rate on the parameter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document} of the distribution function, the loss cone parameter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l$$\end{document}, and the temperature of the distribution and its anisotropy are obtained. A nonmonotonic, quasi-periodic dependence of the growth rate on the ratio of the frequency to the electron gyrofrequency, which manifests itself in the dependence of the equatorial growth rate on the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L$$\end{document}-shell or the dependence of the growth rate on the latitude on a fixed \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L$$\end{document}-shell, is revealed and explained.
引用
收藏
页码:1250 / 1264
页数:15
相关论文
共 29 条
[1]  
Akhiezer I. A., 1975, Plasma Electrodynamics, V2
[2]   Models of Resonant Wave-Particle Interactions [J].
Albert, J. M. ;
Artemyev, A., V ;
Li, W. ;
Gan, L. ;
Ma, Q. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2021, 126 (06)
[3]  
[Anonymous], 1980, TABLE INTEGRALS SERI
[4]   On the Role of Whistler-Mode Waves in Electron Interaction With Dipolarizing Flux Bundles [J].
Artemyev, A., V ;
Neishtadt, A., I ;
Angelopoulos, V .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2022, 127 (04)
[5]  
Benek J., 2017, Astron. Astrophys, V611, pA60, DOI [10.1051/0004-6361/201731424, DOI 10.1051/0004-6361/201731424]
[6]  
Demekhov A. G., 1987, Radiophysics and Quantum Electronics, V30, P547, DOI 10.1007/BF01034403
[7]   UNSTABLE ELECTROSTATIC PLASMA WAVES PROPAGATING PERPENDICULAR TO A MAGNETIC FIELD [J].
DORY, RA ;
GUEST, GE ;
HARRIS, EG .
PHYSICAL REVIEW LETTERS, 1965, 14 (05) :131-&
[8]  
Ginzburg V. L., 1975, Waves in Magnetoactive Plasma, VSecond
[9]   Timescale for radiation belt electron acceleration by whistler mode chorus waves [J].
Horne, RB ;
Thorne, RM ;
Glauert, SA ;
Albert, JM ;
Meredith, NP ;
Anderson, RR .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2005, 110 (A3)
[10]   Electron densities inferred from plasma wave spectra obtained by the Waves instrument on Van Allen Probes [J].
Kurth, W. S. ;
De Pascuale, S. ;
Faden, J. B. ;
Kletzing, C. A. ;
Hospodarsky, G. B. ;
Thaller, S. ;
Wygant, J. R. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2015, 120 (02) :904-914