ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}-Tempered fractional differential equations with impulsesψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}-Tempered fractional differential equations...N. Nyamoradi, C. E. T. Ledesma

被引:0
作者
Nemat Nyamoradi [1 ]
César E. Torres Ledesma [2 ]
机构
[1] Razi University,Department of Mathematics, Faculty of Sciences
[2] Universidad Nacional de Trujillo,Instituto de Investigación en Matemáticas, Faculta de Ciencias Físicas y Matemáticas
来源
Rendiconti del Circolo Matematico di Palermo Series 2 | 2025年 / 74卷 / 1期
关键词
Riemann–Liouville tempered fractional integrals; -Tempered fractional integrals; Fréchet–Kolmogorov; spaces; Primary 26A33; 45P05; 46B50;
D O I
10.1007/s12215-024-01163-8
中图分类号
学科分类号
摘要
In this paper, we study variational structure for the ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}-Tempered fractional derivatives operator. We investigate some properties of ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}-Tempered fractional integral and derivative which are used of variational structure. Also, the existence of solutions for a problem with ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}-Tempered fractional derivative is proved by applying variational methods and critical point theory. Finally, an example is provided.
引用
收藏
相关论文
empty
未找到相关数据