Dynamic analysis of high-order fuzzy difference equation

被引:1
|
作者
Gumus, Mehmet [1 ]
Yalcinkaya, Ibrahim [2 ]
Tollu, Durhasan Turgut [2 ]
机构
[1] Zonguldak Bulent Ecevit Univ, Fac Sci, Dept Math, TR-67100 Zonguldak, Turkiye
[2] Necmettin Erbakan Univ, Fac Sci, Dept Math & Comp Sci, TR-42090 Konya, Turkiye
关键词
Boundedness; Convergence; Fuzzy number; Fuzzy difference equations; alpha-cuts; BEHAVIOR; STABILITY;
D O I
10.1007/s12190-024-02280-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we discuss the existence, boundedness, and asymptotic behavior of the positive solutions of the fuzzy difference equation omega(n+1 )= A omega(n-1)/B + C omega(p)(n-k), n is an element of N-0 with the parameters A, B, C and the initial conditions omega(-i) (i = 0, 1, ..., k) are positive fuzzy numbers and p, k is an element of Z(+). The theoretical results obtained are also supported and visualized by numerical simulations.
引用
收藏
页码:1285 / 1308
页数:24
相关论文
共 50 条
  • [21] A High-Order Difference Scheme for the Space and Time Fractional Bloch-Torrey Equation
    Zhu, Yun
    Sun, Zhi-Zhong
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2018, 18 (01) : 147 - 164
  • [22] Stable and high-order accurate finite difference methods for the diffusive viscous wave equation
    Wang, Siyang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 463
  • [23] A new stability criterion for high-order dynamic fuzzy systems
    Zeighami, Z.
    Jahed-Motlagh, M. R.
    Moarefianpour, A.
    Heydari, G.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2022, 19 (02): : 187 - 203
  • [24] On a higher order fuzzy difference equation with a quadratic term
    Redjam, Ibtissem
    Halim, Yacine
    Feckan, Michal
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2025, 71 (01) : 429 - 452
  • [25] NEW HIGH-ORDER CONSERVATIVE DIFFERENCE SCHEME FOR REGULARIZED LONG WAVE EQUATION WITH RICHARDSON EXTRAPOLATION
    Hu, Jin-Song
    Li, Jia-Jia
    Wang, Xi
    THERMAL SCIENCE, 2019, 23 : S737 - S745
  • [26] HIGH-ORDER FINITE DIFFERENCE SCHEMES FOR SOLVING THE ADVECTION-DIFFUSION EQUATION
    Sari, Murat
    Gurarslan, Gurhan
    Zeytinoglu, Asuman
    MATHEMATICAL & COMPUTATIONAL APPLICATIONS, 2010, 15 (03): : 449 - 460
  • [27] Stability analysis of a high-order finite-difference scheme for the Korteweg–de Vries equation with non-homogeneous boundaries
    Hong Cheng
    Xiaofeng Wang
    Computational and Applied Mathematics, 2021, 40
  • [28] A linearized high-order difference scheme for the fractional Ginzburg-Landau equation
    Hao, Zhao-peng
    Sun, Zhi-zhong
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (01) : 105 - 124
  • [29] Boundedness and asymptotic behavior of the solutions of a fuzzy difference equation
    Papaschinopoulos, G
    Stefanidou, G
    FUZZY SETS AND SYSTEMS, 2003, 140 (03) : 523 - 539
  • [30] Dynamical behaviors of a k-order fuzzy difference equation
    Han, Caihong
    Li, Lue
    Su, Guangwang
    Sun, Taixiang
    OPEN MATHEMATICS, 2022, 20 (01): : 391 - 403