Dynamic analysis of high-order fuzzy difference equation

被引:1
|
作者
Gumus, Mehmet [1 ]
Yalcinkaya, Ibrahim [2 ]
Tollu, Durhasan Turgut [2 ]
机构
[1] Zonguldak Bulent Ecevit Univ, Fac Sci, Dept Math, TR-67100 Zonguldak, Turkiye
[2] Necmettin Erbakan Univ, Fac Sci, Dept Math & Comp Sci, TR-42090 Konya, Turkiye
关键词
Boundedness; Convergence; Fuzzy number; Fuzzy difference equations; alpha-cuts; BEHAVIOR; STABILITY;
D O I
10.1007/s12190-024-02280-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we discuss the existence, boundedness, and asymptotic behavior of the positive solutions of the fuzzy difference equation omega(n+1 )= A omega(n-1)/B + C omega(p)(n-k), n is an element of N-0 with the parameters A, B, C and the initial conditions omega(-i) (i = 0, 1, ..., k) are positive fuzzy numbers and p, k is an element of Z(+). The theoretical results obtained are also supported and visualized by numerical simulations.
引用
收藏
页码:1285 / 1308
页数:24
相关论文
共 50 条
  • [1] DYNAMICS OF A HIGH-ORDER NONLINEAR FUZZY DIFFERENCE EQUATION
    Wang, Changyou
    Li, Jiahui
    Jia, Lili
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (01): : 404 - 421
  • [2] On the dynamics of a higher-order fuzzy difference equation with rational terms
    Yalcinkaya, Ibrahim
    El-Metwally, Hamdy
    Bayram, Mustafa
    Tollu, Durhasan Turgut
    SOFT COMPUTING, 2023, 27 (15) : 10469 - 10479
  • [3] Dynamic Behavior of a Fourth-Order Nonlinear Fuzzy Difference Equation
    Yalcinkaya, Ibrahim
    Er, Bilal
    Tollu, Durhasan Turgut
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2025, 38 (01): : 275 - 290
  • [4] A High-Order Difference Scheme for the Generalized Cattaneo Equation
    Vong, Seak-Weng
    Pang, Hong-Kui
    Jin, Xiao-Qing
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2012, 2 (02) : 170 - 184
  • [5] ON A NONLINEAR FUZZY DIFFERENCE EQUATION
    Yalcinkaya, Ibrahim
    Caliskan, Vildan
    Tollu, Durhasan Turgut
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2022, 71 (01): : 68 - 78
  • [6] DYNAMIC BEHAVIOR OF A SEVEN-ORDER FUZZY DIFFERENCE EQUATION
    Jia, Lili
    Zhao, Xiaojuan
    Wang, Changyou
    Wang, Qiyu
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (01): : 486 - 501
  • [7] Numerical simulation and convergence analysis of a high-order conservative difference scheme for SRLW equation
    Hu, Jinsong
    Zheng, Kelong
    Zheng, Maobo
    APPLIED MATHEMATICAL MODELLING, 2014, 38 (23) : 5573 - 5581
  • [8] On the dynamics of a higher-order fuzzy difference equation with rational terms
    İbrahim Yalçınkaya
    Hamdy El-Metwally
    Mustafa Bayram
    Durhasan Turgut Tollu
    Soft Computing, 2023, 27 : 10469 - 10479
  • [9] A high-order difference scheme for the fractional sub-diffusion equation
    Hao, Zhao-peng
    Lin, Guang
    Sun, Zhi-zhong
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017, 94 (02) : 405 - 426
  • [10] Qualitative analysis of second-order fuzzy difference equation with quadratic term
    Zhang, Qianhong
    Ouyang, Miao
    Pan, Bairong
    Lin, Fubiao
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (02) : 1355 - 1376