A multi-modal deep learning model for prediction of Ki-67 for meningiomas using pretreatment MR images

被引:0
作者
Chen, Chaoyue [1 ]
Zhao, Yanjie [1 ]
Cai, Linrui [2 ]
Jiang, Haoze [1 ]
Teng, Yuen [1 ]
Zhang, Yang [1 ]
Zhang, Shuangyi [1 ]
Zheng, Junkai [1 ]
Zhao, Fumin [3 ]
Huang, Zhouyang [1 ]
Xu, Xiaolong [4 ]
Zan, Xin [1 ]
Xu, Jianfeng [5 ]
Zhang, Lei [4 ]
Xu, Jianguo [1 ]
机构
[1] Sichuan Univ, West China Hosp, Dept Neurosurg, 37 Guoxue Alley, Chengdu, Peoples R China
[2] Sichuan Univ, Dis Women & Children, Minist Educ, 20 Sect 3,Renmin South Rd, Chengdu, Peoples R China
[3] Sichuan Univ, West China Univ Hosp 2, Dept Radiol, 20 Sect 3,Renmin South Rd, Chengdu, Peoples R China
[4] Sichuan Univ, Coll Comp Sci, Chengdu, Peoples R China
[5] Third Peoples Hosp Mianyang, Sichuan Mental Hlth Ctr, Dept Neurosurg, 190 East Sect Jiannan Rd, Mianyang, Peoples R China
关键词
CENTRAL-NERVOUS-SYSTEM; NATURAL-HISTORY; CLASSIFICATION; GROWTH; TUMORS;
D O I
10.1038/s41698-025-00811-1
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
This study developed and validated a deep learning network using baseline magnetic resonance imaging (MRI) to predict Ki-67 status in meningioma patients. A total of 1239 patients were retrospectively recruited from three hospitals between January 2010 and December 2023, forming training, internal validation, and two external validation cohorts. A representation learning framework was utilized for modeling, and performance was assessed against existing methods. Furthermore, Kaplan-Meier survival analysis was conducted to investigate whether the model could be used for tumor growth prediction. The model achieved superior results, with areas under the curve (AUCs) of 0.797 for internal testing and 0.808 for generalization, alongside 0.756 and 0.727 for 3- and 5-year tumor growth predictions, respectively. The prediction was significantly associated with the growth of asymptomatic small meningiomas. Overall, the model provides an effective tool for early prediction of Ki-67 and tumor volume growth, aiding in individualized patient management.
引用
收藏
页数:9
相关论文
共 37 条
[1]   A prospective study of the natural history of incidental meningioma-Hold your horses! [J].
Behbahani, Maziar ;
Skeie, Geir Olve ;
Eide, Geir Egil ;
Hausken, Annbjorg ;
Lund-Johansen, Morten ;
Skeie, Bente Sandvei .
NEURO-ONCOLOGY PRACTICE, 2019, 6 (06) :438-450
[2]   Predicting cancer outcomes with radiomics and artificial intelligence in radiology [J].
Bera, Kaustav ;
Braman, Nathaniel ;
Gupta, Amit ;
Velcheti, Vamsidhar ;
Madabhushi, Anant .
NATURE REVIEWS CLINICAL ONCOLOGY, 2022, 19 (02) :132-146
[3]   MR signal intensity: staying on the bright side in MR image interpretation [J].
Bloem, Johan L. ;
Reijnierse, Monique ;
Huizinga, Tom W. J. ;
van der Helm-van Mil, Annette H. M. .
RMD OPEN, 2018, 4 (01)
[4]   Performance Test of a Well-Trained Model for Meningioma Segmentation in Health Care Centers: Secondary Analysis Based on Four Retrospective Multicenter Data Sets [J].
Chen, Chaoyue ;
Teng, Yuen ;
Tan, Shuo ;
Wang, Zizhou ;
Zhang, Lei ;
Xu, Jianguo .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2023, 25
[5]  
Chen J., 2023, Eur Radiol
[6]  
Dosovitskiy A, 2021, Arxiv, DOI arXiv:2010.11929
[7]  
Du L., P 27 ACM SIGKDD C KN
[8]   Radiomics: Images Are More than Pictures, They Are Data [J].
Gillies, Robert J. ;
Kinahan, Paul E. ;
Hricak, Hedvig .
RADIOLOGY, 2016, 278 (02) :563-577
[9]   EANO guideline on the diagnosis and management of meningiomas [J].
Goldbrunner, Roland ;
Stavrinou, Pantelis ;
Jenkinson, Michael D. ;
Sahm, Felix ;
Mawrin, Christian ;
Weber, Damien C. ;
Preusser, Matthias ;
Minniti, Giuseppe ;
Lund-Johansen, Morten ;
Lefranc, Florence ;
Houdart, Emanuel ;
Sallabanda, Kita ;
Le Rhun, Emilie ;
Nieuwenhuizen, David ;
Tabatabai, Ghazaleh ;
Soffietti, Riccardo ;
Weller, Michael .
NEURO-ONCOLOGY, 2021, 23 (11) :1821-1834
[10]   WHO Grade I Meningioma Recurrence: Identifying High Risk Patients Using Histopathological Features and the MIB-1 Index [J].
Haddad, Alexander F. ;
Young, Jacob S. ;
Kanungo, Ishan ;
Sudhir, Sweta ;
Chen, Jia-Shu ;
Raleigh, David R. ;
Magill, Stephen T. ;
McDermott, Michael W. ;
Aghi, Manish K. .
FRONTIERS IN ONCOLOGY, 2020, 10