BackgroundTo determine the impact of sodium butyrate on the activation of the reactive oxygen species (ROS)/nuclear factor kappa B (NF-kappa B)/NLR family pyrin domain containing 3 (NLRP3) signaling pathway and angiogenesis in human retinal microvascular endothelial cells (HRMECs) caused by high glucose (HG).MethodsHRMECs were grown for 24 h or 72 h in HG solution (30 mmol/L D-glucose) with 5 mM NaB. Using Cell Counting Kit-8, the effects of HG and NaB levels on the viability of HRMECs were examined. Using various kits, intracellular ROS levels, lactate dehydrogenase (LDH), and Malondialdehyde (MDA) in cell supernatants were measured. Western blot, Immunofluorescence, and Real-time quantitative polymerase chain reaction were employed to quantify protein and messenger RNA expression. Using wound-healing and tube formation tests, the migratory proficiency and angiogenesis of HRMECs were evaluated.ResultsNaB demonstrated a reduction in ROS production, as well as the release of LDH and MDA in HG-induced HRMECs. Additionally, NaB led to a decrease in protein expression of phosphorylation of NF-kappa B, NLRP3, Caspase 1, interleukin, vascular cell adhesion molecule-1 and intercellular adhesion molecule-1. The impact of HG on zonula occluden-1, a tight junction protein, was attenuated by NaB. Furthermore, NaB inhibited the migration and tube formation of HRMECs partly by ROS/NF-kappa B/NLRP3 pathway.ConclusionNaB suppresses the activation of ROS/NF-kappa B/NLRP3 signaling pathway and angiogenesis in HRMECs induced by HG.