Detection of retinal diseases from OCT images using a VGG16 and transfer learning

被引:0
作者
Jaimes, Wilwer J. [1 ]
Arenas, Wilson J. [1 ]
Navarro, Humberto J. [2 ]
Altuve, Miguel [3 ,4 ]
机构
[1] Pontif Bolivarian Univ, Fac Elect & Elect Engn, Bucaramanga, Colombia
[2] Un Tecnol Santander, Fac Nat Sci & Engn, Bucaramanga, Colombia
[3] Valencian Int Univ, Valencia, Spain
[4] Univ Simon Bolivar, Appl Biophys & Bioengn Grp, Caracas, Venezuela
关键词
Deep Learning; VGG16; Convolutional Neural Network; Classification; Retinal Diseases; OPTICAL COHERENCE TOMOGRAPHY; MACULAR DEGENERATION; CLASSIFICATION; CNN;
D O I
10.1007/s42452-025-06565-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The field of ophthalmology relies on digital image processing techniques, such as Optical Coherence Tomography (OCT), for diagnosing retinal diseases. However, manual interpretation of OCT images is time-consuming and prone to human error. This study developed a deep learning-based model to assist in diagnosing retinal pathologies from OCT images. A modified VGG16 architecture was trained on a dataset of OCT images to classify four retinal conditions: choroidal neovascularization, diabetic macular edema, drusen, and normal. Rigorous evaluation, including cross-validation and independent testing, demonstrated the model's ability to achieve an accuracy of 95.19% and high precision (95.29%), recall (95.19%), and F1-score (95.20%). In addition, gradient-weighted class activation mapping was employed to visualize network decisions, and a graphical user interface was developed to enhance user interaction with the diagnostic tool. The developed model can potentially improve the early detection and diagnosis of retinal diseases, ultimately enhancing patient care.
引用
收藏
页数:14
相关论文
共 35 条
[1]  
Awais M, 2017, IEEE I C SIGNAL IMAG, P489, DOI 10.1109/ICSIPA.2017.8120661
[2]   Evaluating Retinal Disease Diagnosis with an Interpretable Lightweight CNN Model Resistant to Adversarial Attacks [J].
Bhandari, Mohan ;
Shahi, Tej Bahadur ;
Neupane, Arjun .
JOURNAL OF IMAGING, 2023, 9 (10)
[3]   Optical coherence tomography [J].
Bouma, Brett E. ;
de Boer, Johannes F. ;
Huang, David ;
Jang, Ik-Kyung ;
Yonetsu, Taishi ;
Leggett, Cadman L. ;
Leitgeb, Rainer ;
Sampson, David D. ;
Suter, Melissa ;
Vakoc, Ben J. ;
Villiger, Martin ;
Wojtkowski, Maciej .
NATURE REVIEWS METHODS PRIMERS, 2022, 2 (01)
[4]  
Chan GCY, 2018, 2018 INTERNATIONAL CONFERENCE ON INTELLIGENT AND ADVANCED SYSTEM (ICIAS 2018) / WORLD ENGINEERING, SCIENCE & TECHNOLOGY CONGRESS (ESTCON)
[5]   Automated Classification of Retinal OCT Images Using a Deep Multi-Scale Fusion CNN [J].
Das, Vineeta ;
Dandapat, Samarendra ;
Bora, Prabin Kumar .
IEEE SENSORS JOURNAL, 2021, 21 (20) :23256-23265
[6]   Clinically applicable deep learning for diagnosis and referral in retinal disease [J].
De Fauw, Jeffrey ;
Ledsam, Joseph R. ;
Romera-Paredes, Bernardino ;
Nikolov, Stanislav ;
Tomasev, Nenad ;
Blackwell, Sam ;
Askham, Harry ;
Glorot, Xavier ;
O'Donoghue, Brendan ;
Visentin, Daniel ;
van den Driessche, George ;
Lakshminarayanan, Balaji ;
Meyer, Clemens ;
Mackinder, Faith ;
Bouton, Simon ;
Ayoub, Kareem ;
Chopra, Reena ;
King, Dominic ;
Karthikesalingam, Alan ;
Hughes, Cian O. ;
Raine, Rosalind ;
Hughes, Julian ;
Sim, Dawn A. ;
Egan, Catherine ;
Tufail, Adnan ;
Montgomery, Hugh ;
Hassabis, Demis ;
Rees, Geraint ;
Back, Trevor ;
Khaw, Peng T. ;
Suleyman, Mustafa ;
Cornebise, Julien ;
Keane, Pearse A. ;
Ronneberger, Olaf .
NATURE MEDICINE, 2018, 24 (09) :1342-+
[7]   Role of Optical Coherence Tomography Imaging in Predicting Progression of Age-Related Macular Disease: A Survey [J].
Elsharkawy, Mohamed ;
Elrazzaz, Mostafa ;
Ghazal, Mohammed ;
Alhalabi, Marah ;
Soliman, Ahmed ;
Mahmoud, Ali ;
El-Daydamony, Eman ;
Atwan, Ahmed ;
Thanos, Aristomenis ;
Sandhu, Harpal Singh ;
Giridharan, Guruprasad ;
El-Baz, Ayman .
DIAGNOSTICS, 2021, 11 (12)
[8]   Deep Learning Classification of Drusen, Choroidal Neovascularization, and Diabetic Macular Edema in Optical Coherence Tomography (OCT) Images [J].
Esfahani, Parsa Riazi ;
Reddy, Akshay J. ;
Nawathey, Neel ;
Ghauri, Muhammad S. ;
Min, Mildred ;
Wagh, Himanshu ;
Tak, Nathaniel ;
Patel, Rakesh .
CUREUS JOURNAL OF MEDICAL SCIENCE, 2023, 15 (07)
[9]   Iterative fusion convolutional neural networks for classification of optical coherence tomography images [J].
Fang, Leyuan ;
Jin, Yuxuan ;
Huang, Laifeng ;
Guo, Siyu ;
Zhao, Guangzhe ;
Chen, Xiangdong .
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 59 :327-333
[10]   Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy [J].
Fujimoto, JG ;
Pitris, C ;
Boppart, SA ;
Brezinski, ME .
NEOPLASIA, 2000, 2 (1-2) :9-25