A W-weighted generalization of {1,2,3,1k}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1,2,3,1^{k}\}$$\end{document}-inverse for rectangular matrices

被引:0
作者
Geeta Chowdhry [1 ]
Falguni Roy [1 ]
机构
[1] National Institute of Technology Karnataka,Department of Mathematical and Computational Sciences
[2] Surathkal,undefined
关键词
Generalized inverses; Weighted generalized inverses; Core inverse; -weighted Drazin inverse; Weighted core-EP inverse; -inverse; 15A09; 15A23; 15A24;
D O I
10.1007/s41478-024-00759-8
中图分类号
学科分类号
摘要
This paper presents a novel extension of the {1,2,3,1k}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1,2,3,1^{k}\}$$\end{document}-inverse concept to complex rectangular matrices, denoted as a W-weighted {1,2,3,1k}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1,2,3,1^{k}\}$$\end{document}-inverse, using a complex rectangular matrix W. The study begins by introducing a weighted {1,2,3}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1,2,3\}$$\end{document}-inverse along with its representations and characterizations. The paper establishes criteria for the existence of the proposed inverses based on rank equalities and extends it to weighted inner inverses. The work additionally establishes various representations, properties and characterizations of W-weighted {1,2,3,1k}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1,2,3,1^{k}\}$$\end{document}-inverses, including canonical representations derived through singular value and core-nilpotent decompositions. This, in turn, yields distinctive canonical representations and characterizations of the set A{1,2,3,1k}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\{ 1,2,3,{1^{k}}\}$$\end{document}. Furthermore, it is shown that W-weighted {1,2,3,1k}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1,2,3,1^{k}\}$$\end{document}-inverse is unique if and only if it has index 0 or 1, reducing it to the weighted core inverse.
引用
收藏
页码:2913 / 2937
页数:24
相关论文
共 58 条
  • [1] Baksalary OM(2010)Core inverse of matrices Linear Multilinear Algebra 58 681-697
  • [2] Trenkler G(2014)On a generalized core inverse Applied Mathematics and Computation 236 450-457
  • [3] Baksalary OM(2020)Further results on weighted core-EP inverse of matrices Results in Mathematics 75 174-39
  • [4] Trenkler G(2022)Weighted inner inverse for rectangular matrices Quaestiones Mathematicae 45 11-11
  • [5] Behera R(2023)A characterization of Drazin monotonicity of operators over ordered Banach space The Journal of Analysis 31 1-109
  • [6] Maharana G(1953)On the algebra of networks Transactions of the American Mathematical Society 74 99-62
  • [7] Sahoo JK(1980)A Drazin inverse for rectangular matrices Linear Algebra and its Applications 29 53-514
  • [8] Behera R(1958)Pseudo-inverses in associative rings and semigroups The American Mathematical Monthly 65 506-373
  • [9] Mosić D(2021)The weak core inverse Aequationes Mathematicae 95 351-281
  • [10] Sahoo JK(2018)Revisiting the core EP inverse and its extension to rectangular matrices Quaestiones Mathematicae 41 265-3740