A compactness theorem for conformal metrics with constant scalar curvature and constant boundary mean curvature in dimension three

被引:1
|
作者
Almaraz, Sergio [1 ]
Wang, Shaodong [2 ]
机构
[1] Univ Fed Fluminense, Inst Matemat & Estat, Rua Prof Marcos Waldemar Freitas S-N, BR-24210201 Niteroi, RJ, Brazil
[2] Nanjing Univ Sci & Technol, Sch Math & Stat, Nanjing 210094, Peoples R China
关键词
BLOW-UP PHENOMENA; YAMABE PROBLEM; FLAT METRICS; UNIQUENESS THEOREMS; EXISTENCE THEOREM; MANIFOLDS; DEFORMATION; EQUATION; PROOF;
D O I
10.1007/s00526-024-02895-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
On a compact three-dimensional Riemannian manifold with boundary, we prove the compactness of the full set of conformal metrics with positive constant scalar curvature and constant mean curvature on the boundary. This involves a blow-up analysis of a Yamabe equation with critical Sobolev exponents both in the interior and on the boundary.
引用
收藏
页数:24
相关论文
共 50 条