Global existence and Gevrey analyticity of the Debye-Huckel system in critical Besov-Morrey spaces

被引:0
作者
El Idrissi, Ahmed [1 ]
Srhiri, Halima [1 ]
El Boukari, Brahim [1 ]
El Ghordaf, Jalila [1 ]
机构
[1] Sultan Moulay Slimane Univ, Fac Sci & Technol, LMACS Lab, Beni Mellal 23000, Morocco
关键词
Debye-Huckel system; Global solution; Gevrey analyticity; Decay; Homogeneous Besov-Morrey spaces; DRIFT-DIFFUSION SYSTEM; WELL-POSEDNESS; REGULARITY; EQUATIONS;
D O I
10.1007/s12215-024-01181-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper deals with the Cauchy problem of the Debye-Huckel system in homogeneous Besov-Morrey spaces. By using the smoothing effect of the heat semigroup and the Littlewood-Paley theory, we obtain the global existence of solutions for small initial data in the critical Besov-Morrey spaces N-p,h,infinity(center dot)-2+d/p(R-d)xN(p,h,infinity)(center dot)(-2+d/p)(R-d) with d/2<p<infinity and 1 <= h <= p. . Moreover, we demonstrate that the solutions obtained are analytic in a Gevrey class. Finally, as a consequence of Gevrey analyticity result, we get time decay estimates of solutions in critical Besov-Morrey spaces.
引用
收藏
页数:20
相关论文
共 34 条