Ascent and descent of multiplication and composition induced operators on variable exponent lebesgue spaces

被引:0
作者
Datt, Gopal [1 ]
Bajaj, Daljeet Singh [2 ]
Fiorenza, Alberto [3 ,4 ]
机构
[1] Univ Delhi, PGDAV Coll, Dept Math, Delhi 110065, India
[2] Univ Delhi, Dept Math, Delhi 110007, India
[3] Univ Napoli Federico II, Dipartimento Architettura, Via Monteoliveto 3, I-80134 Naples, Italy
[4] CNR, Ist Applicaz Calcolo Mauro Picone, Via Pietro Castellino 111, I-80131 Naples, Italy
关键词
Ascent; Descent; Multiplication operators; Composition operators; Weighted composition operators; Variable exponent Lebesgue spaces;
D O I
10.1007/s12215-024-01121-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper focuses on determining the ascent and descent of multiplication, composition, and weighted composition operators on variable exponent Lebesgue spaces. We explore the conditions on the measurable functions u and measurable transformations T defined on sigma-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma -$$\end{document}finite complete measure space (X,A,mu)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,\mathcal {A},\mu )$$\end{document} that cause these operators on variable exponent Lebesgue spaces to have finite or infinite ascent (descent).
引用
收藏
页数:15
相关论文
共 21 条
[1]   Weighted composition operators on Lorentz spaces [J].
Arora, Subhash Chander ;
Datt, Gopal ;
Verma, Satish .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2007, 44 (04) :701-708
[2]  
Babin BJ, 2010, Multivariate data analysis, V7
[3]   Composition operators on variable exponent Lebesgue spaces [J].
Bajaj, D. S. ;
Datt, G. .
ANALYSIS MATHEMATICA, 2024, 50 (02) :345-366
[4]  
Bajaj DS, 2022, COMMUN KOREAN MATH S, V37, P195
[5]  
Birnbaum Z., 1931, Studia Math, V3, P1, DOI [10.4064/sm-3-1-1-67, DOI 10.4064/SM-3-1-1-67]
[6]  
Castillo René Erlin, 2015, Rev.colomb.mat., V49, P293, DOI 10.15446/recolma.v49n2.60447
[7]  
CruzUribe DV, 2013, APPL NUMER HARMON AN, DOI 10.1007/978-3-0348-0548-3
[8]  
Datt G., COMMUNICATED
[9]   Weighted composition operators on variable exponent Lebesgue spaces [J].
Datt, Gopal ;
Bajaj, Daljeet Singh ;
Fiorenza, Alberto .
ADVANCES IN OPERATOR THEORY, 2024, 9 (03)
[10]   Essential ascent and descent of weighted composition operators on Lorentz sequence spaces [J].
Datt, Gopal ;
Bajaj, Daljeet Singh .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 514 (02)